Finite $p$-nilpotent groups with some subgroups weakly $\mathcal {M}$-supplemented
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 291-297
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Suppose that $G$ is a finite group and $H$ is a subgroup of $G$. Subgroup $H$ is said to be weakly $\mathcal {M}$-supplemented in $G$ if there exists a subgroup $B$ of $G$ such that (1) $G=HB$, and (2) if $H_{1}/H_{G}$ is a maximal subgroup of $H/H_{G}$, then $H_{1}B=BH_{1}
Suppose that $G$ is a finite group and $H$ is a subgroup of $G$. Subgroup $H$ is said to be weakly $\mathcal {M}$-supplemented in $G$ if there exists a subgroup $B$ of $G$ such that (1) $G=HB$, and (2) if $H_{1}/H_{G}$ is a maximal subgroup of $H/H_{G}$, then $H_{1}B=BH_{1}$, where $H_{G}$ is the largest normal subgroup of $G$ contained in $H$. We fix in every noncyclic Sylow subgroup $P$ of $G$ a subgroup $D$ satisfying $1|D||P|$ and study the $p$-nilpotency of $G$ under the assumption that every subgroup $H$ of $P$ with $|H|=|D|$ is weakly $\mathcal {M}$-supplemented in $G$. Some recent results are generalized.
DOI : 10.21136/CMJ.2019.0273-18
Classification : 20D10, 20D20
Keywords: $p$-nilpotent group; weakly $\mathcal {M}$-supplemented subgroup; finite group
@article{10_21136_CMJ_2019_0273_18,
     author = {Dong, Liushuan},
     title = {Finite $p$-nilpotent groups with some subgroups weakly $\mathcal {M}$-supplemented},
     journal = {Czechoslovak Mathematical Journal},
     pages = {291--297},
     year = {2020},
     volume = {70},
     number = {1},
     doi = {10.21136/CMJ.2019.0273-18},
     mrnumber = {4078360},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0273-18/}
}
TY  - JOUR
AU  - Dong, Liushuan
TI  - Finite $p$-nilpotent groups with some subgroups weakly $\mathcal {M}$-supplemented
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 291
EP  - 297
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0273-18/
DO  - 10.21136/CMJ.2019.0273-18
LA  - en
ID  - 10_21136_CMJ_2019_0273_18
ER  - 
%0 Journal Article
%A Dong, Liushuan
%T Finite $p$-nilpotent groups with some subgroups weakly $\mathcal {M}$-supplemented
%J Czechoslovak Mathematical Journal
%D 2020
%P 291-297
%V 70
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0273-18/
%R 10.21136/CMJ.2019.0273-18
%G en
%F 10_21136_CMJ_2019_0273_18
Dong, Liushuan. Finite $p$-nilpotent groups with some subgroups weakly $\mathcal {M}$-supplemented. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 291-297. doi: 10.21136/CMJ.2019.0273-18

[1] Gorenstein, D.: Finite Groups. Chelsea Publishing Company, New York (1980). | MR | JFM

[2] Huppert, B.: Endliche Gruppen I. German Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin (1967). | DOI | MR | JFM

[3] Li, Y., Wang, Y., Wei, H.: The influence of $\pi$-quasinormality of some subgroups of a finite group. Arch. Math. 81 (2003), 245-252. | DOI | MR | JFM

[4] Miao, L.: On weakly $\mathcal M$-supplemented subgroups of Sylow $p$-subgroups of finite groups. Glasg. Math. J. 53 (2011), 401-410. | DOI | MR | JFM

[5] Miao, L., Lempken, W.: On $\mathcal M$-supplemented subgroups of finite groups. J. Group Theory 12 (2009), 271-287. | DOI | MR | JFM

[6] Miao, L., Lempken, W.: On weakly $\mathcal M$-supplemented primary subgroups of finite groups. Turk. J. Math. 34 (2010), 489-500. | DOI | MR | JFM

[7] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80, Springer, New York (1982). | DOI | MR | JFM

[8] Wei, H., Wang, Y.: On $c^{*}$-normality and its properties. J. Group Theory 10 (2007), 211-223. | DOI | MR | JFM

Cité par Sources :