Keywords: associated graded ring; fibre product; connected sum; short Gorenstein ring; stretched Gorenstein ring; Poincaré series
@article{10_21136_CMJ_2019_0259_18,
author = {Ananthnarayan, H. and Celikbas, Ela and Laxmi, Jai and Yang, Zheng},
title = {Associated graded rings and connected sums},
journal = {Czechoslovak Mathematical Journal},
pages = {261--279},
year = {2020},
volume = {70},
number = {1},
doi = {10.21136/CMJ.2019.0259-18},
mrnumber = {4078358},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0259-18/}
}
TY - JOUR AU - Ananthnarayan, H. AU - Celikbas, Ela AU - Laxmi, Jai AU - Yang, Zheng TI - Associated graded rings and connected sums JO - Czechoslovak Mathematical Journal PY - 2020 SP - 261 EP - 279 VL - 70 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0259-18/ DO - 10.21136/CMJ.2019.0259-18 LA - en ID - 10_21136_CMJ_2019_0259_18 ER -
%0 Journal Article %A Ananthnarayan, H. %A Celikbas, Ela %A Laxmi, Jai %A Yang, Zheng %T Associated graded rings and connected sums %J Czechoslovak Mathematical Journal %D 2020 %P 261-279 %V 70 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0259-18/ %R 10.21136/CMJ.2019.0259-18 %G en %F 10_21136_CMJ_2019_0259_18
Ananthnarayan, H.; Celikbas, Ela; Laxmi, Jai; Yang, Zheng. Associated graded rings and connected sums. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 261-279. doi: 10.21136/CMJ.2019.0259-18
[1] Ananthnarayan, H.: Approximating Artinian Rings by Gorenstein Rings and Three-Standardness of the Maximal Ideal. Ph.D. Thesis, University of Kansas (2009).
[2] Ananthnarayan, H., Avramov, L. L., Moore, W. F.: Connected sums of Gorenstein local rings. J. Reine Angew. Math. 667 (2012), 149-176. | DOI | MR | JFM
[3] Ananthnarayan, H., Celikbas, E., Laxmi, J., Yang, Z.: Decomposing Gorenstein rings as connected sums. J. Algebra 527 (2019), 241-263. | DOI | MR | JFM
[4] Avramov, L. L., Kustin, A. R., Miller, M.: Poincaré series of modules over local rings of small embedding codepth or small linking number. J. Algebra 118 (1988), 162-204. | DOI | MR | JFM
[5] Buczyńska, W., Buczyński, J., Kleppe, J., Teitler, Z.: Apolarity and direct sum decomposability of polynomials. Mich. Math. J. 64 (2015), 675-719. | DOI | MR | JFM
[6] Casnati, G., Elias, J., Notari, R., Rossi, M. E.: Poincaré series and deformations of Gorenstein local algebras. Commun. Algebra 41 (2013), 1049-1059. | DOI | MR | JFM
[7] Elias, J., Rossi, M. E.: Isomorphism classes of short Gorenstein local rings via Macaulay's inverse system. Trans. Am. Math. Soc. 364 (2012), 4589-4604. | DOI | MR | JFM
[8] Iarrobino, A.: The Hilbert function of a Gorenstein Artin algebra. Commutative Algebra Mathematics Sciences Research Institute Publications 15, Springer, New York (1989), 347-364. | DOI | MR | JFM
[9] Lescot, J.: La série de Bass d'un produit fibré d'anneaux locaux. Sémin. d'Algèbre P. Dubreil et M.-P. Malliavin, 35ème Année, Proc Lecture Notes in Math. 1029, Paris, Springer, Berlin French (1983), 218-239. | DOI | MR | JFM
[10] Levin, G. L., Avramov, L. L.: Factoring out the socle of a Gorenstein ring. J. Algebra 55 (1978), 74-83. | DOI | MR | JFM
[11] Sally, J. D.: Stretched Gorenstein rings. J. Lond. Math. Soc., II. Ser. 20 (1979), 19-26. | DOI | MR | JFM
[12] Smith, L., Stong, R. E.: Projective bundle ideals and Poincaré duality algebras. J. Pure Appl. Algebra 215 (2011), 609-627. | DOI | MR | JFM
Cité par Sources :