On strongly affine extensions of commutative rings
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 251-260
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A ring extension $R\subseteq S$ is said to be strongly affine if each $R$-subalgebra of $S$ is a finite-type $R$-algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if $R$ is a quasi-local ring of finite dimension, then $R\subseteq S$ is integrally closed and strongly affine if and only if $R\subseteq S$ is a Prüfer extension (i.e. $(R,S)$ is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown. Let $G$ be a subgroup of the automorphism group of $S$ such that $R$ is invariant under action by $G$. If $R\subseteq S$ is strongly affine, then $R^G\subseteq S^G$ is strongly affine under some conditions.
DOI :
10.21136/CMJ.2019.0240-18
Classification :
13A15, 13A50, 13B02, 13E05
Keywords: strongly affine; Prüfer extension; finitely many intermediate algebras property extension; finite chain propery extension; normal pair; integrally closed pair; ring of invariants
Keywords: strongly affine; Prüfer extension; finitely many intermediate algebras property extension; finite chain propery extension; normal pair; integrally closed pair; ring of invariants
@article{10_21136_CMJ_2019_0240_18,
author = {Zeidi, Nabil},
title = {On strongly affine extensions of commutative rings},
journal = {Czechoslovak Mathematical Journal},
pages = {251--260},
publisher = {mathdoc},
volume = {70},
number = {1},
year = {2020},
doi = {10.21136/CMJ.2019.0240-18},
mrnumber = {4078357},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0240-18/}
}
TY - JOUR AU - Zeidi, Nabil TI - On strongly affine extensions of commutative rings JO - Czechoslovak Mathematical Journal PY - 2020 SP - 251 EP - 260 VL - 70 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0240-18/ DO - 10.21136/CMJ.2019.0240-18 LA - en ID - 10_21136_CMJ_2019_0240_18 ER -
Zeidi, Nabil. On strongly affine extensions of commutative rings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 251-260. doi: 10.21136/CMJ.2019.0240-18
Cité par Sources :