On strongly affine extensions of commutative rings
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 251-260
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A ring extension $R\subseteq S$ is said to be strongly affine if each $R$-subalgebra of $S$ is a finite-type $R$-algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if $R$ is a quasi-local ring of finite dimension, then $R\subseteq S$ is integrally closed and strongly affine if and only if $R\subseteq S$ is a Prüfer extension (i.e. $(R,S)$ is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown. Let $G$ be a subgroup of the automorphism group of $S$ such that $R$ is invariant under action by $G$. If $R\subseteq S$ is strongly affine, then $R^G\subseteq S^G$ is strongly affine under some conditions.
A ring extension $R\subseteq S$ is said to be strongly affine if each $R$-subalgebra of $S$ is a finite-type $R$-algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if $R$ is a quasi-local ring of finite dimension, then $R\subseteq S$ is integrally closed and strongly affine if and only if $R\subseteq S$ is a Prüfer extension (i.e. $(R,S)$ is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown. Let $G$ be a subgroup of the automorphism group of $S$ such that $R$ is invariant under action by $G$. If $R\subseteq S$ is strongly affine, then $R^G\subseteq S^G$ is strongly affine under some conditions.
DOI : 10.21136/CMJ.2019.0240-18
Classification : 13A15, 13A50, 13B02, 13E05
Keywords: strongly affine; Prüfer extension; finitely many intermediate algebras property extension; finite chain propery extension; normal pair; integrally closed pair; ring of invariants
@article{10_21136_CMJ_2019_0240_18,
     author = {Zeidi, Nabil},
     title = {On strongly affine extensions of commutative rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {251--260},
     year = {2020},
     volume = {70},
     number = {1},
     doi = {10.21136/CMJ.2019.0240-18},
     mrnumber = {4078357},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0240-18/}
}
TY  - JOUR
AU  - Zeidi, Nabil
TI  - On strongly affine extensions of commutative rings
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 251
EP  - 260
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0240-18/
DO  - 10.21136/CMJ.2019.0240-18
LA  - en
ID  - 10_21136_CMJ_2019_0240_18
ER  - 
%0 Journal Article
%A Zeidi, Nabil
%T On strongly affine extensions of commutative rings
%J Czechoslovak Mathematical Journal
%D 2020
%P 251-260
%V 70
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0240-18/
%R 10.21136/CMJ.2019.0240-18
%G en
%F 10_21136_CMJ_2019_0240_18
Zeidi, Nabil. On strongly affine extensions of commutative rings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 251-260. doi: 10.21136/CMJ.2019.0240-18

[1] Anderson, D. D., Dobbs, D. E., Mullins, B.: The primitive element theorem for commutative algebra. Houston J. Math. 25 (1999), 603-623 corrigendum ibid. 28 217-219 2002. | MR | JFM

[2] Ayache, A., Dobbs, D. E.: Finite maximal chains of commutative rings. J. Algebra Appl. 14 (2015), Article ID 1450075, 27 pages. | DOI | MR | JFM

[3] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings. Math. Z. 225 (1997), 49-65. | DOI | MR | JFM

[4] Nasr, M. Ben, Zeidi, N.: A special chain Theorem in the set of intermediate rings. J. Algebra Appl. 16 (2017), Article ID 1750185, 11 pages. | DOI | MR | JFM

[5] Davis, E. D.: Overrings of commutative rings III: Normal pairs. Trans. Amer. Math. Soc. 182 (1973), 175-185. | DOI | MR | JFM

[6] Dobbs, D. E.: Lying-over pairs of commutative rings. Can. J. Math. 33 (1981), 454-475. | DOI | MR | JFM

[7] Dobbs, D. E.: On characterizations of integrality involving the lying-over and incomparability properties. J. Comm. Algebra 1 (2009), 227-235. | DOI | MR | JFM

[8] Dobbs, D. E., Mullins, B., Picavet, G., Picavet-L'Hermitte, M.: On the FIP property for extensions of commutative rings. Commun. Algebra 33 (2005), 3091-3119. | DOI | MR | JFM

[9] Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M.: Characterizing the ring extensions that satisfy FIP or FCP. J. Algebra 371 (2012), 391-429. | DOI | MR | JFM

[10] Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M.: Transfer results for the FIP and FCP properties of ring extensions. Commun. Algebra 43 (2015), 1279-1316. | DOI | MR | JFM

[11] Dobbs, D. E., Shapiro, J.: Descent of divisibility properties of integral domains to fixed rings. Houston J. Math. 32 (2006), 337-353. | MR | JFM

[12] Ferrand, D., Olivier, J.-P.: Homomorphismes minimaux d'anneaux. J. Algebra 16 (1970), 461-471 French. | DOI | MR | JFM

[13] Gilmer, R.: Multiplicative Ideal Theory. Pure and Applied Mathematics 12, Marcel Dekker, New York (1972). | MR | JFM

[14] Gilmer, R.: Some finiteness conditions on the set of overrings of an integral domain. Proc. Am. Math. Soc. 131 (2003), 2337-2346. | DOI | MR | JFM

[15] Gilmer, R., Heinzer, W.: Finitely generated intermediate rings. J. Pure Appl. Algebra 37 (1985), 237-264. | DOI | MR | JFM

[16] Gilmer, R., Hoffmann, J.: A characterization of Prüfer domains in terms of polynomials. Pac. J. Math. 60 (1975), 81-85. | DOI | MR | JFM

[17] Jaballah, A.: Finiteness of the set of intermediary rings in normal pairs. Saitama Math. J. 17 (1999), 59-61. | MR | JFM

[18] Jaballah, A.: Ring extensions with some finiteness conditions on the set of intermediate rings. Czech. Math. J. 60 (2010), 117-124. | DOI | MR | JFM

[19] Kaplansky, I.: Commutative Rings. University of Chicago Press, Chicago (1974). | MR | JFM

[20] Knebusch, M., Zhang, D.: Manis Valuations and Prüfer Extensions I: A New Chapter in Commutative Algebra. Lecture Notes in Mathematics 1791, Springer, Berlin (2002). | DOI | MR | JFM

[21] Kumar, R., Gaur, A.: On $\lambda$-extensions of commutative rings. J. Algebra Appl. 17 (2018), Article ID 1850063, 9 pages. | DOI | MR | JFM

[22] Papick, I. J.: Finite type extensions and coherence. Pac. J. Math. 78 (1978), 161-172. | DOI | MR | JFM

[23] Picavet, G., Picavet-L'Hermitte, M.: Some more combinatorics results on Nagata extensions. Palest. J. Math. 5 (2016), 49-62. | MR | JFM

[24] Picavet, G., Picavet-L'Hermitte, M.: Quasi-Prüfer extensions of rings. Rings, Polynomials and Modules M. Fontana et al. Springer, Cham (2017), 307-336. | DOI | MR | JFM

[25] Schmidt, A.: Properties of Rings and of Ring Extensions That are Invariant Under Group Action. PhD Thesis. George Mason University, Spring (2015), Available at http://hdl.handle.net/1920/9627 | MR

[26] Wadsworth, A. R.: Pairs of domains where all intermediate domains are Noetherian. Trans. Am. Math. Soc. 195 (1974), 201-211. | DOI | MR | JFM

Cité par Sources :