On strongly affine extensions of commutative rings
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 251-260.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A ring extension $R\subseteq S$ is said to be strongly affine if each $R$-subalgebra of $S$ is a finite-type $R$-algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if $R$ is a quasi-local ring of finite dimension, then $R\subseteq S$ is integrally closed and strongly affine if and only if $R\subseteq S$ is a Prüfer extension (i.e. $(R,S)$ is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown. Let $G$ be a subgroup of the automorphism group of $S$ such that $R$ is invariant under action by $G$. If $R\subseteq S$ is strongly affine, then $R^G\subseteq S^G$ is strongly affine under some conditions.
DOI : 10.21136/CMJ.2019.0240-18
Classification : 13A15, 13A50, 13B02, 13E05
Keywords: strongly affine; Prüfer extension; finitely many intermediate algebras property extension; finite chain propery extension; normal pair; integrally closed pair; ring of invariants
@article{10_21136_CMJ_2019_0240_18,
     author = {Zeidi, Nabil},
     title = {On strongly affine extensions of commutative rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {251--260},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2020},
     doi = {10.21136/CMJ.2019.0240-18},
     mrnumber = {4078357},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0240-18/}
}
TY  - JOUR
AU  - Zeidi, Nabil
TI  - On strongly affine extensions of commutative rings
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 251
EP  - 260
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0240-18/
DO  - 10.21136/CMJ.2019.0240-18
LA  - en
ID  - 10_21136_CMJ_2019_0240_18
ER  - 
%0 Journal Article
%A Zeidi, Nabil
%T On strongly affine extensions of commutative rings
%J Czechoslovak Mathematical Journal
%D 2020
%P 251-260
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0240-18/
%R 10.21136/CMJ.2019.0240-18
%G en
%F 10_21136_CMJ_2019_0240_18
Zeidi, Nabil. On strongly affine extensions of commutative rings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 251-260. doi : 10.21136/CMJ.2019.0240-18. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0240-18/

Cité par Sources :