The equidistribution of Fourier coefficients of half integral weight modular forms on the plane
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 235-249
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $f=\sum _{n=1}^{\infty }a(n)q^{n}\in S_{k+1/2}(N,\chi _{0})$ be a nonzero cuspidal Hecke eigenform of weight $k+\frac {1}{2}$ and the trivial nebentypus $\chi _{0}$, where the Fourier coefficients $a(n)$ are real. Bruinier and Kohnen conjectured that the signs of $a(n)$ are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies $\{a(t n^{2})\}_{n}$, where $t$ is a squarefree integer such that $a(t)\neq 0$. Let $q$ and $d$ be natural numbers such that $(d,q)=1$. In this work, we show that $\{a(t n^{2})\}_{n}$ is equidistributed over any arithmetic progression $n\equiv d \mod q$.
Let $f=\sum _{n=1}^{\infty }a(n)q^{n}\in S_{k+1/2}(N,\chi _{0})$ be a nonzero cuspidal Hecke eigenform of weight $k+\frac {1}{2}$ and the trivial nebentypus $\chi _{0}$, where the Fourier coefficients $a(n)$ are real. Bruinier and Kohnen conjectured that the signs of $a(n)$ are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies $\{a(t n^{2})\}_{n}$, where $t$ is a squarefree integer such that $a(t)\neq 0$. Let $q$ and $d$ be natural numbers such that $(d,q)=1$. In this work, we show that $\{a(t n^{2})\}_{n}$ is equidistributed over any arithmetic progression $n\equiv d \mod q$.
DOI :
10.21136/CMJ.2019.0223-18
Classification :
11F30, 11F37
Keywords: Shimura lift; Fourier coefficient; half-integral weight; Sato-Tate equidistribution
Keywords: Shimura lift; Fourier coefficient; half-integral weight; Sato-Tate equidistribution
@article{10_21136_CMJ_2019_0223_18,
author = {Mezroui, Soufiane},
title = {The equidistribution of {Fourier} coefficients of half integral weight modular forms on the plane},
journal = {Czechoslovak Mathematical Journal},
pages = {235--249},
year = {2020},
volume = {70},
number = {1},
doi = {10.21136/CMJ.2019.0223-18},
mrnumber = {4078356},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0223-18/}
}
TY - JOUR AU - Mezroui, Soufiane TI - The equidistribution of Fourier coefficients of half integral weight modular forms on the plane JO - Czechoslovak Mathematical Journal PY - 2020 SP - 235 EP - 249 VL - 70 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0223-18/ DO - 10.21136/CMJ.2019.0223-18 LA - en ID - 10_21136_CMJ_2019_0223_18 ER -
%0 Journal Article %A Mezroui, Soufiane %T The equidistribution of Fourier coefficients of half integral weight modular forms on the plane %J Czechoslovak Mathematical Journal %D 2020 %P 235-249 %V 70 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0223-18/ %R 10.21136/CMJ.2019.0223-18 %G en %F 10_21136_CMJ_2019_0223_18
Mezroui, Soufiane. The equidistribution of Fourier coefficients of half integral weight modular forms on the plane. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 235-249. doi: 10.21136/CMJ.2019.0223-18
Cité par Sources :