The equidistribution of Fourier coefficients of half integral weight modular forms on the plane
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 235-249.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $f=\sum _{n=1}^{\infty }a(n)q^{n}\in S_{k+1/2}(N,\chi _{0})$ be a nonzero cuspidal Hecke eigenform of weight $k+\frac {1}{2}$ and the trivial nebentypus $\chi _{0}$, where the Fourier coefficients $a(n)$ are real. Bruinier and Kohnen conjectured that the signs of $a(n)$ are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies $\{a(t n^{2})\}_{n}$, where $t$ is a squarefree integer such that $a(t)\neq 0$. Let $q$ and $d$ be natural numbers such that $(d,q)=1$. In this work, we show that $\{a(t n^{2})\}_{n}$ is equidistributed over any arithmetic progression $n\equiv d \mod q$.
DOI : 10.21136/CMJ.2019.0223-18
Classification : 11F30, 11F37
Keywords: Shimura lift; Fourier coefficient; half-integral weight; Sato-Tate equidistribution
@article{10_21136_CMJ_2019_0223_18,
     author = {Mezroui, Soufiane},
     title = {The equidistribution of {Fourier} coefficients of half integral weight modular forms on the plane},
     journal = {Czechoslovak Mathematical Journal},
     pages = {235--249},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2020},
     doi = {10.21136/CMJ.2019.0223-18},
     mrnumber = {4078356},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0223-18/}
}
TY  - JOUR
AU  - Mezroui, Soufiane
TI  - The equidistribution of Fourier coefficients of half integral weight modular forms on the plane
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 235
EP  - 249
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0223-18/
DO  - 10.21136/CMJ.2019.0223-18
LA  - en
ID  - 10_21136_CMJ_2019_0223_18
ER  - 
%0 Journal Article
%A Mezroui, Soufiane
%T The equidistribution of Fourier coefficients of half integral weight modular forms on the plane
%J Czechoslovak Mathematical Journal
%D 2020
%P 235-249
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0223-18/
%R 10.21136/CMJ.2019.0223-18
%G en
%F 10_21136_CMJ_2019_0223_18
Mezroui, Soufiane. The equidistribution of Fourier coefficients of half integral weight modular forms on the plane. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 235-249. doi : 10.21136/CMJ.2019.0223-18. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0223-18/

Cité par Sources :