The equidistribution of Fourier coefficients of half integral weight modular forms on the plane
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 235-249
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $f=\sum _{n=1}^{\infty }a(n)q^{n}\in S_{k+1/2}(N,\chi _{0})$ be a nonzero cuspidal Hecke eigenform of weight $k+\frac {1}{2}$ and the trivial nebentypus $\chi _{0}$, where the Fourier coefficients $a(n)$ are real. Bruinier and Kohnen conjectured that the signs of $a(n)$ are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies $\{a(t n^{2})\}_{n}$, where $t$ is a squarefree integer such that $a(t)\neq 0$. Let $q$ and $d$ be natural numbers such that $(d,q)=1$. In this work, we show that $\{a(t n^{2})\}_{n}$ is equidistributed over any arithmetic progression $n\equiv d \mod q$.
Let $f=\sum _{n=1}^{\infty }a(n)q^{n}\in S_{k+1/2}(N,\chi _{0})$ be a nonzero cuspidal Hecke eigenform of weight $k+\frac {1}{2}$ and the trivial nebentypus $\chi _{0}$, where the Fourier coefficients $a(n)$ are real. Bruinier and Kohnen conjectured that the signs of $a(n)$ are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies $\{a(t n^{2})\}_{n}$, where $t$ is a squarefree integer such that $a(t)\neq 0$. Let $q$ and $d$ be natural numbers such that $(d,q)=1$. In this work, we show that $\{a(t n^{2})\}_{n}$ is equidistributed over any arithmetic progression $n\equiv d \mod q$.
DOI : 10.21136/CMJ.2019.0223-18
Classification : 11F30, 11F37
Keywords: Shimura lift; Fourier coefficient; half-integral weight; Sato-Tate equidistribution
@article{10_21136_CMJ_2019_0223_18,
     author = {Mezroui, Soufiane},
     title = {The equidistribution of {Fourier} coefficients of half integral weight modular forms on the plane},
     journal = {Czechoslovak Mathematical Journal},
     pages = {235--249},
     year = {2020},
     volume = {70},
     number = {1},
     doi = {10.21136/CMJ.2019.0223-18},
     mrnumber = {4078356},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0223-18/}
}
TY  - JOUR
AU  - Mezroui, Soufiane
TI  - The equidistribution of Fourier coefficients of half integral weight modular forms on the plane
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 235
EP  - 249
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0223-18/
DO  - 10.21136/CMJ.2019.0223-18
LA  - en
ID  - 10_21136_CMJ_2019_0223_18
ER  - 
%0 Journal Article
%A Mezroui, Soufiane
%T The equidistribution of Fourier coefficients of half integral weight modular forms on the plane
%J Czechoslovak Mathematical Journal
%D 2020
%P 235-249
%V 70
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0223-18/
%R 10.21136/CMJ.2019.0223-18
%G en
%F 10_21136_CMJ_2019_0223_18
Mezroui, Soufiane. The equidistribution of Fourier coefficients of half integral weight modular forms on the plane. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 235-249. doi: 10.21136/CMJ.2019.0223-18

[1] Akiyama, S., Tanigawa, Y.: Calculation of values of $L$-functions associated to elliptic curves. Math. Comput. 68 (1999), 1201-1231. | DOI | MR | JFM

[2] Arias-de-Reyna, S., Inam, I., Wiese, G.: On conjectures of Sato-Tate and Bruinier-Kohnen. Ramanujan J. 36 (2015), 455-481. | DOI | MR | JFM

[3] Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R.: A family of Calabi-Yau varieties and potential automorphy. II. Publ. Res. Inst. Math. Sci. 47 (2011), 29-98. | DOI | MR | JFM

[4] Bruinier, J. H., Kohnen, W.: Sign changes of coefficients of half integral weight modular forms. Modular Forms on Schiermonnikoog B. Edixhoven et al. Cambridge University Press, Cambridge (2008), 57-65. | DOI | MR | JFM

[5] Delange, H.: Un théorème sur les fonctions arithmétiques multiplicatives et ses applications. Ann. Sci. Éc. Norm. Supér. (3) 78 (1961), 1-29 French. | DOI | MR | JFM

[6] Inam, I., Wiese, G.: Equidistribution of signs for modular eigenforms of half integral weight. Arch. Math. 101 (2013), 331-339. | DOI | MR | JFM

[7] Inam, I., Wiese, G.: A short note on the Bruiner-Kohnen sign equidistribution conjecture and Halász' theorem. Int. J. Number Theory 12 (2016), 357-360. | DOI | MR | JFM

[8] Kohnen, W., Lau, Y.-K., Wu, J.: Fourier coefficients of cusp forms of half-integral weight. Math. Z. 273 (2013), 29-41. | DOI | MR | JFM

[9] Korevaar, J.: The Wiener-Ikehara theorem by complex analysis. Proc. Am. Math. Soc. 134 (2006), 1107-1116. | DOI | MR | JFM

[10] Mezroui, S.: Sign changes of a product of Dirichlet character and Fourier coefficients of half integral weight modular forms. Available at , (2017), 7 pages. | arXiv

[11] Murty, M. R., Murty, V. K.: The Sato-Tate conjecture and generalizations. Math. Newsl., Ramanujan Math. Soc. 19 (2010), 247-257. | MR | JFM

[12] Shimura, G.: On modular forms of half-integral weight. Ann. Math. (2) 97 (1973), 440-481. | DOI | MR | JFM

[13] Wong, P-J.: On the Chebotarev-Sato-Tate phenomenon. J. Number Theory 196 (2019), 272-290. | DOI | MR | JFM

Cité par Sources :