Functional inequalities and manifolds with nonnegative weighted Ricci curvature
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 213-233
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that $n$-dimensional $(n\geqslant 2)$ complete and noncompact metric measure spaces with nonnegative weighted Ricci curvature in which some Caffarelli-Kohn-Nirenberg type inequality holds are isometric to the model metric measure $n$-space (i.e. the Euclidean metric $n$-space). We also show that the Euclidean metric spaces are the only complete and noncompact metric measure spaces of nonnegative weighted Ricci curvature satisfying some prescribed Sobolev type inequality.
We show that $n$-dimensional $(n\geqslant 2)$ complete and noncompact metric measure spaces with nonnegative weighted Ricci curvature in which some Caffarelli-Kohn-Nirenberg type inequality holds are isometric to the model metric measure $n$-space (i.e. the Euclidean metric $n$-space). We also show that the Euclidean metric spaces are the only complete and noncompact metric measure spaces of nonnegative weighted Ricci curvature satisfying some prescribed Sobolev type inequality.
DOI : 10.21136/CMJ.2019.0214-18
Classification : 31C12, 53C21
Keywords: Caffarelli-Kohn-Nirenberg type inequality; weighted Ricci curvature; volume comparison
@article{10_21136_CMJ_2019_0214_18,
     author = {Mao, Jing},
     title = {Functional inequalities and manifolds with nonnegative weighted {Ricci} curvature},
     journal = {Czechoslovak Mathematical Journal},
     pages = {213--233},
     year = {2020},
     volume = {70},
     number = {1},
     doi = {10.21136/CMJ.2019.0214-18},
     mrnumber = {4078355},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0214-18/}
}
TY  - JOUR
AU  - Mao, Jing
TI  - Functional inequalities and manifolds with nonnegative weighted Ricci curvature
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 213
EP  - 233
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0214-18/
DO  - 10.21136/CMJ.2019.0214-18
LA  - en
ID  - 10_21136_CMJ_2019_0214_18
ER  - 
%0 Journal Article
%A Mao, Jing
%T Functional inequalities and manifolds with nonnegative weighted Ricci curvature
%J Czechoslovak Mathematical Journal
%D 2020
%P 213-233
%V 70
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0214-18/
%R 10.21136/CMJ.2019.0214-18
%G en
%F 10_21136_CMJ_2019_0214_18
Mao, Jing. Functional inequalities and manifolds with nonnegative weighted Ricci curvature. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 213-233. doi: 10.21136/CMJ.2019.0214-18

[1] Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11 (1976), 573-598 French. | DOI | MR | JFM

[2] Aubin, T.: Nonlinear Analysis on Manifolds. Monge-Ampère Equations. Grundlehren der Mathematischen Wissenschaften 252, Springer, New York (1982). | DOI | MR | JFM

[3] Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics, Springer, Berlin (1998). | DOI | MR | JFM

[4] Bakry, D., Émery, M.: Hypercontractivité de semi-groupes de diffusion. C. R. Acad. Sci., Paris, Sér. I 299 (1984), 775-778 French. | MR | JFM

[5] Bakry, D., Émery, M.: Diffusions hypercontractives. Séminaire de probabilités XIX 1983/84 Lecture Notes in Mathematics 1123, Springer, Berlin (1985), 177-206. | DOI | MR | JFM

[6] Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53 (1984), 259-275. | MR | JFM

[7] Catrina, F., Wang, Z.-Q.: On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Commun. Pure Appl. Math. 54 (2001), 229-258. | DOI | MR | JFM

[8] Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics 115, Academic Press, Orlando (1984). | DOI | MR | JFM

[9] Carmo, M. do, Xia, C.: Ricci curvature and the topology of open manifolds. Math. Ann. 316 (2000), 319-400. | DOI | MR | JFM

[10] Carmo, M. P. do, Xia, C.: Complete manifolds with non-negative Ricci curvature and the Caffarelli-Kohn-Nirenberg inequalities. Compos. Math. 140 (2004), 818-826. | DOI | MR | JFM

[11] Freitas, P., Mao, J., Salavessa, I.: Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds. Calc. Var. Partial Differ. Equ. 51 (2014), 701-724. | DOI | MR | JFM

[12] Gray, A.: Tubes. Addison-Wesley Publishing Company, Redwood City (1990). | DOI | MR | JFM

[13] Hardy, G. H., Littlewood, J.-E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1952). | MR | JFM

[14] Hebey, E.: Sobolev Spaces on Riemannian Manifolds. Lecture Notes in Mathematics 1635, Springer, Berlin (1996). | DOI | MR | JFM

[15] Katz, N. N., Kondo, K.: Generalized space forms. Trans. Am. Math. Soc. 354 (2002), 2279-2284. | DOI | MR | JFM

[16] Kondo, K., Tanaka, M.: Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below. I. Math. Ann. 351 (2011), 251-266. | DOI | MR | JFM

[17] Ledoux, M.: On manifolds with non-negative Ricci curvature and Sobolev inequalities. Commun. Anal. Geom. 7 (1999), 347-353. | DOI | MR | JFM

[18] Lieb, E. H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. (2) 118 (1983), 349-374. | DOI | MR | JFM

[19] Lott, J.: Some geometric properties of the Bakry-Émery-Ricci tensor. Comment. Math. Helv. 78 (2003), 865-883. | DOI | MR | JFM

[20] Mao, J.: Open manifold with nonnegative Ricci curvature and collapsing volume. Kyushu J. Math. 66 (2012), 509-516. | DOI | MR | JFM

[21] Mao, J.: Eigenvalue Estimation and Some Results on Finite Topological Type. Ph.D. Thesis, IST-UTL (2013).

[22] Mao, J.: Eigenvalue inequalities for the $p$-Laplacian on a Riemannian manifold and estimates for the heat kernel. J. Math. Pures Appl. (9) 101 (2014), 372-393. | DOI | MR | JFM

[23] Mao, J.: The Gagliardo-Nirenberg inequalities and manifolds with non-negative weighted Ricci curvature. Kyushu J. Math. 70 (2016), 29-46. | DOI | MR | JFM

[24] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Available at (2002). | arXiv | JFM

[25] Petersen, P.: Comparison geometry problem list. Riemannian Geometry Fields Institute Monographs 4, American Mathematical Society, Providence (1996), 87-115. | DOI | MR | JFM

[26] Schoen, R., Yau, S.-T.: Lectures on Differential Geometry. Conference Proceedings and Lecture Notes in Geometry and Topology 1, International Press, Cambridge (1994). | MR | JFM

[27] Shiohama, K., Tanaka, M.: Compactification and maximal diameter theorem for noncompact manifolds with radial curvature bounded below. Math. Z. 241 (2002), 341-351. | DOI | MR | JFM

[28] Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. | DOI | MR | JFM

[29] Wei, G., Wylie, W.: Comparison geometry for the Bakry-Emery Ricci tensor. J. Differ. Geom. 83 (2009), 377-405. | DOI | MR | JFM

[30] Xia, C.: Complete manifolds with nonnegative Ricci curvature and almost best Sobolev constant. Ill. J. Math. 45 (2001), 1253-1259. | DOI | MR | JFM

[31] Xia, C.: The Gagliardo-Nirenberg inequalities and manifolds of non-negative Ricci curvature. J. Funct. Anal. 224 (2005), 230-241. | DOI | MR | JFM

[32] Xia, C.: The Caffarelli-Kohn-Nirenberg inequalities on complete manifolds. Math. Res. Lett. 14 (2007), 875-885. | DOI | MR | JFM

Cité par Sources :