Variable exponent Fock spaces
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 187-204 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce variable exponent Fock spaces and study some of their basic properties such as boundedness of evaluation functionals, density of polynomials, boundedness of a Bergman-type projection and duality. We also prove that under the global log-Hölder condition, the variable exponent Fock spaces coincide with the classical ones.
We introduce variable exponent Fock spaces and study some of their basic properties such as boundedness of evaluation functionals, density of polynomials, boundedness of a Bergman-type projection and duality. We also prove that under the global log-Hölder condition, the variable exponent Fock spaces coincide with the classical ones.
DOI : 10.21136/CMJ.2019.0205-18
Classification : 30H20, 46E30
Keywords: Fock space; variable exponent Lebesgue space; Bergman projection
@article{10_21136_CMJ_2019_0205_18,
     author = {Chac\'on, Gerardo R. and Chac\'on, Gerardo A.},
     title = {Variable exponent {Fock} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {187--204},
     year = {2020},
     volume = {70},
     number = {1},
     doi = {10.21136/CMJ.2019.0205-18},
     mrnumber = {4078353},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0205-18/}
}
TY  - JOUR
AU  - Chacón, Gerardo R.
AU  - Chacón, Gerardo A.
TI  - Variable exponent Fock spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 187
EP  - 204
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0205-18/
DO  - 10.21136/CMJ.2019.0205-18
LA  - en
ID  - 10_21136_CMJ_2019_0205_18
ER  - 
%0 Journal Article
%A Chacón, Gerardo R.
%A Chacón, Gerardo A.
%T Variable exponent Fock spaces
%J Czechoslovak Mathematical Journal
%D 2020
%P 187-204
%V 70
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0205-18/
%R 10.21136/CMJ.2019.0205-18
%G en
%F 10_21136_CMJ_2019_0205_18
Chacón, Gerardo R.; Chacón, Gerardo A. Variable exponent Fock spaces. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 187-204. doi: 10.21136/CMJ.2019.0205-18

[1] Chacón, G. R., Rafeiro, H.: Variable exponent Bergman spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 105 (2014), 41-49. | DOI | MR | JFM

[2] Chacón, G. R., Rafeiro, H.: Toeplitz operators on variable exponent Bergman spaces. Mediterr. J. Math. 13 (2016), 3525-3536. | DOI | MR | JFM

[3] Chacón, G. R., Rafeiro, H., Vallejo, J. C.: Carleson measures for variable exponent Bergman spaces. Complex Anal. Oper. Theory 11 (2017), 1623-1638. | DOI | MR | JFM

[4] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis, Birkhäuser, Basel (2013). | DOI | MR | JFM

[5] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017, Springer, Berlin (2011). | DOI | MR | JFM

[6] Harjulehto, P., Hästö, P., Klén, R.: Generalized Orlicz spaces and related PDE. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 143 (2016), 155-173. | DOI | MR | JFM

[7] Isralowitz, J.: Invertible Toeplitz products, weighted norm inequalities, and $ A_p$ weights. J. Oper. Theory 71 (2014), 381-410. | DOI | MR | JFM

[8] Karapetyants, A., Samko, S.: Spaces $ BMO^{p(\cdot)}(\mathbb D)$ of a variable exponent $p(z)$. Georgian Math. J. 17 (2010), 529-542. | DOI | MR | JFM

[9] Karapetyants, A. N., Samko, S. G.: Mixed norm Bergman-Morrey-type spaces on the unit disc. Math. Notes 100 (2016), 38-48 translation from Mat. Zametki 100 2016 47-58. | DOI | MR | JFM

[10] Karapetyants, A. N., Samko, S. G.: Mixed norm variable exponent Bergman space on the unit disc. Complex Var. Elliptic Equ. 61 (2016), 1090-1106. | DOI | MR | JFM

[11] Kokilashvili, V., Paatashvili, V.: On Hardy classes of analytic functions with a variable exponent. Proc. A. Razmadze Math. Inst. 142 (2006), 134-137. | MR | JFM

[12] Kokilashvili, V., Paatashvili, V.: On the convergence of sequences of functions in Hardy classes with a variable exponent. Proc. A. Razmadze Math. Inst. 146 (2008), 124-126. | MR | JFM

[13] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | DOI | MR | JFM

[14] Lefèvre, P., Li, D., Queffélec, H., Rodríguez-Piazza, L.: Composition operators on Hardy-Orlicz spaces. Mem. Am. Math. Soc. 207 (2010), 74 pages. | DOI | MR | JFM

[15] Lefèvre, P., Li, D., Queffélec, H., Rodríguez-Piazza, L.: Compact composition operators on Bergman-Orlicz spaces. Trans. Am. Math. Soc. 365 (2013), 3943-3970. | DOI | MR | JFM

[16] Motos, J., Planells, M. J., Talavera, C. F.: On variable exponent Lebesgue spaces of entire analytic functions. J. Math. Anal. Appl. 388 (2012), 775-787. | DOI | MR | JFM

[17] Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3 (1931), 200-211 German. | DOI | JFM

[18] Tung, Y.-C. J.: Fock Spaces. Ph.D. Thesis, The University of Michigan (2005). | MR

[19] Zhu, K.: Analysis on Fock Spaces. Graduate Texts in Mathematics 263, Springer, New York (2012). | DOI | MR | JFM

Cité par Sources :