Keywords: Fock space; variable exponent Lebesgue space; Bergman projection
@article{10_21136_CMJ_2019_0205_18,
author = {Chac\'on, Gerardo R. and Chac\'on, Gerardo A.},
title = {Variable exponent {Fock} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {187--204},
year = {2020},
volume = {70},
number = {1},
doi = {10.21136/CMJ.2019.0205-18},
mrnumber = {4078353},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0205-18/}
}
TY - JOUR AU - Chacón, Gerardo R. AU - Chacón, Gerardo A. TI - Variable exponent Fock spaces JO - Czechoslovak Mathematical Journal PY - 2020 SP - 187 EP - 204 VL - 70 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0205-18/ DO - 10.21136/CMJ.2019.0205-18 LA - en ID - 10_21136_CMJ_2019_0205_18 ER -
Chacón, Gerardo R.; Chacón, Gerardo A. Variable exponent Fock spaces. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 187-204. doi: 10.21136/CMJ.2019.0205-18
[1] Chacón, G. R., Rafeiro, H.: Variable exponent Bergman spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 105 (2014), 41-49. | DOI | MR | JFM
[2] Chacón, G. R., Rafeiro, H.: Toeplitz operators on variable exponent Bergman spaces. Mediterr. J. Math. 13 (2016), 3525-3536. | DOI | MR | JFM
[3] Chacón, G. R., Rafeiro, H., Vallejo, J. C.: Carleson measures for variable exponent Bergman spaces. Complex Anal. Oper. Theory 11 (2017), 1623-1638. | DOI | MR | JFM
[4] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis, Birkhäuser, Basel (2013). | DOI | MR | JFM
[5] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017, Springer, Berlin (2011). | DOI | MR | JFM
[6] Harjulehto, P., Hästö, P., Klén, R.: Generalized Orlicz spaces and related PDE. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 143 (2016), 155-173. | DOI | MR | JFM
[7] Isralowitz, J.: Invertible Toeplitz products, weighted norm inequalities, and $ A_p$ weights. J. Oper. Theory 71 (2014), 381-410. | DOI | MR | JFM
[8] Karapetyants, A., Samko, S.: Spaces $ BMO^{p(\cdot)}(\mathbb D)$ of a variable exponent $p(z)$. Georgian Math. J. 17 (2010), 529-542. | DOI | MR | JFM
[9] Karapetyants, A. N., Samko, S. G.: Mixed norm Bergman-Morrey-type spaces on the unit disc. Math. Notes 100 (2016), 38-48 translation from Mat. Zametki 100 2016 47-58. | DOI | MR | JFM
[10] Karapetyants, A. N., Samko, S. G.: Mixed norm variable exponent Bergman space on the unit disc. Complex Var. Elliptic Equ. 61 (2016), 1090-1106. | DOI | MR | JFM
[11] Kokilashvili, V., Paatashvili, V.: On Hardy classes of analytic functions with a variable exponent. Proc. A. Razmadze Math. Inst. 142 (2006), 134-137. | MR | JFM
[12] Kokilashvili, V., Paatashvili, V.: On the convergence of sequences of functions in Hardy classes with a variable exponent. Proc. A. Razmadze Math. Inst. 146 (2008), 124-126. | MR | JFM
[13] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | DOI | MR | JFM
[14] Lefèvre, P., Li, D., Queffélec, H., Rodríguez-Piazza, L.: Composition operators on Hardy-Orlicz spaces. Mem. Am. Math. Soc. 207 (2010), 74 pages. | DOI | MR | JFM
[15] Lefèvre, P., Li, D., Queffélec, H., Rodríguez-Piazza, L.: Compact composition operators on Bergman-Orlicz spaces. Trans. Am. Math. Soc. 365 (2013), 3943-3970. | DOI | MR | JFM
[16] Motos, J., Planells, M. J., Talavera, C. F.: On variable exponent Lebesgue spaces of entire analytic functions. J. Math. Anal. Appl. 388 (2012), 775-787. | DOI | MR | JFM
[17] Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3 (1931), 200-211 German. | DOI | JFM
[18] Tung, Y.-C. J.: Fock Spaces. Ph.D. Thesis, The University of Michigan (2005). | MR
[19] Zhu, K.: Analysis on Fock Spaces. Graduate Texts in Mathematics 263, Springer, New York (2012). | DOI | MR | JFM
Cité par Sources :