Keywords: TI-subgroup; QTI-subgroup; maximal subgroup; Frobenius group; solvable group
@article{10_21136_CMJ_2019_0203_18,
author = {Chen, Ruifang and Zhao, Xianhe},
title = {On {TI-subgroups} and {QTI-subgroups} of finite groups},
journal = {Czechoslovak Mathematical Journal},
pages = {179--185},
year = {2020},
volume = {70},
number = {1},
doi = {10.21136/CMJ.2019.0203-18},
mrnumber = {4078352},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0203-18/}
}
TY - JOUR AU - Chen, Ruifang AU - Zhao, Xianhe TI - On TI-subgroups and QTI-subgroups of finite groups JO - Czechoslovak Mathematical Journal PY - 2020 SP - 179 EP - 185 VL - 70 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0203-18/ DO - 10.21136/CMJ.2019.0203-18 LA - en ID - 10_21136_CMJ_2019_0203_18 ER -
%0 Journal Article %A Chen, Ruifang %A Zhao, Xianhe %T On TI-subgroups and QTI-subgroups of finite groups %J Czechoslovak Mathematical Journal %D 2020 %P 179-185 %V 70 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0203-18/ %R 10.21136/CMJ.2019.0203-18 %G en %F 10_21136_CMJ_2019_0203_18
Chen, Ruifang; Zhao, Xianhe. On TI-subgroups and QTI-subgroups of finite groups. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 179-185. doi: 10.21136/CMJ.2019.0203-18
[1] Arad, Z., Herfort, W.: Classification of finite groups with a CC-subgroup. Commun. Algebra 32 (2004), 2087-2098. | DOI | MR | JFM
[2] Gorenstein, D.: Finite Groups. Harper's Series in Modern Mathematics, Harper & Row, New York (1968). | MR | JFM
[3] Guo, X., Li, S., Flavell, P.: Finite groups whose abelian subgroups are TI-subgroups. J. Algebra 307 (2007), 565-569. | DOI | MR | JFM
[4] Huppert, B.: Endliche Gruppen I. Die Grundlehren der Mathematischen Wissenschaften 134, Springer, Berlin German (1967). | DOI | MR | JFM
[5] Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups. An Introduction. Universitext, Springer, New York (2004). | DOI | MR | JFM
[6] Li, S.: Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups. Math. Proc. R. Ir. Acad. 100A (2000), 65-71. | MR | JFM
[7] Lu, J., Guo, X.: Finite groups all of whose second maximal subgroups are QTI-subgroups. Commun. Algebra 40 (2012), 3726-3732. | DOI | MR | JFM
[8] Lu, J., Pang, L.: A note on TI-subgroups of finite groups. Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 75-77. | DOI | MR | JFM
[9] Lu, J., Pang, L., Zhong, X.: Finite groups with non-nilpotent maximal subgroups. Monatsh. Math. 171 (2013), 425-431. | DOI | MR | JFM
[10] Qian, G., Tang, F.: Finite groups all of whose abelian subgroups are QTI-subgroups. J. Algebra 320 (2008), 3605-3611. | DOI | MR | JFM
[11] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80, Springer, New York (1996). | DOI | MR | JFM
[12] Shi, J., Zhang, C.: Finite groups in which all nonabelian subgroups are TI-subgroups. J. Algebra Appl. 13 (2014), Article ID 1350074, 3 pages. | DOI | MR | JFM
[13] Walls, G.: Trivial intersection groups. Arch. Math. 32 (1979), 1-4. | DOI | MR | JFM
Cité par Sources :