On TI-subgroups and QTI-subgroups of finite groups
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 179-185
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a group. A subgroup $H$ of $G$ is called a TI-subgroup if $H\cap H^g=1$ or $H$ for every $g\in G$ and $H$ is called a QTI-subgroup if $C_G(x) \le N_G(H)$ for any $1\neq x\in H$. In this paper, a finite group in which every nonabelian maximal is a TI-subgroup (QTI-subgroup) is characterized.
Let $G$ be a group. A subgroup $H$ of $G$ is called a TI-subgroup if $H\cap H^g=1$ or $H$ for every $g\in G$ and $H$ is called a QTI-subgroup if $C_G(x) \le N_G(H)$ for any $1\neq x\in H$. In this paper, a finite group in which every nonabelian maximal is a TI-subgroup (QTI-subgroup) is characterized.
DOI : 10.21136/CMJ.2019.0203-18
Classification : 20D10
Keywords: TI-subgroup; QTI-subgroup; maximal subgroup; Frobenius group; solvable group
@article{10_21136_CMJ_2019_0203_18,
     author = {Chen, Ruifang and Zhao, Xianhe},
     title = {On {TI-subgroups} and {QTI-subgroups} of finite groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {179--185},
     year = {2020},
     volume = {70},
     number = {1},
     doi = {10.21136/CMJ.2019.0203-18},
     mrnumber = {4078352},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0203-18/}
}
TY  - JOUR
AU  - Chen, Ruifang
AU  - Zhao, Xianhe
TI  - On TI-subgroups and QTI-subgroups of finite groups
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 179
EP  - 185
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0203-18/
DO  - 10.21136/CMJ.2019.0203-18
LA  - en
ID  - 10_21136_CMJ_2019_0203_18
ER  - 
%0 Journal Article
%A Chen, Ruifang
%A Zhao, Xianhe
%T On TI-subgroups and QTI-subgroups of finite groups
%J Czechoslovak Mathematical Journal
%D 2020
%P 179-185
%V 70
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0203-18/
%R 10.21136/CMJ.2019.0203-18
%G en
%F 10_21136_CMJ_2019_0203_18
Chen, Ruifang; Zhao, Xianhe. On TI-subgroups and QTI-subgroups of finite groups. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 179-185. doi: 10.21136/CMJ.2019.0203-18

[1] Arad, Z., Herfort, W.: Classification of finite groups with a CC-subgroup. Commun. Algebra 32 (2004), 2087-2098. | DOI | MR | JFM

[2] Gorenstein, D.: Finite Groups. Harper's Series in Modern Mathematics, Harper & Row, New York (1968). | MR | JFM

[3] Guo, X., Li, S., Flavell, P.: Finite groups whose abelian subgroups are TI-subgroups. J. Algebra 307 (2007), 565-569. | DOI | MR | JFM

[4] Huppert, B.: Endliche Gruppen I. Die Grundlehren der Mathematischen Wissenschaften 134, Springer, Berlin German (1967). | DOI | MR | JFM

[5] Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups. An Introduction. Universitext, Springer, New York (2004). | DOI | MR | JFM

[6] Li, S.: Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups. Math. Proc. R. Ir. Acad. 100A (2000), 65-71. | MR | JFM

[7] Lu, J., Guo, X.: Finite groups all of whose second maximal subgroups are QTI-subgroups. Commun. Algebra 40 (2012), 3726-3732. | DOI | MR | JFM

[8] Lu, J., Pang, L.: A note on TI-subgroups of finite groups. Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 75-77. | DOI | MR | JFM

[9] Lu, J., Pang, L., Zhong, X.: Finite groups with non-nilpotent maximal subgroups. Monatsh. Math. 171 (2013), 425-431. | DOI | MR | JFM

[10] Qian, G., Tang, F.: Finite groups all of whose abelian subgroups are QTI-subgroups. J. Algebra 320 (2008), 3605-3611. | DOI | MR | JFM

[11] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80, Springer, New York (1996). | DOI | MR | JFM

[12] Shi, J., Zhang, C.: Finite groups in which all nonabelian subgroups are TI-subgroups. J. Algebra Appl. 13 (2014), Article ID 1350074, 3 pages. | DOI | MR | JFM

[13] Walls, G.: Trivial intersection groups. Arch. Math. 32 (1979), 1-4. | DOI | MR | JFM

Cité par Sources :