Acyclic 4-choosability of planar graphs without 4-cycles
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 161-178
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A proper vertex coloring of a graph $G$ is acyclic if there is no bicolored cycle in $G$. In other words, each cycle of $G$ must be colored with at least three colors. Given a list assignment $L=\{L(v)\colon v\in V\}$, if there exists an acyclic coloring $\pi $ of $G$ such that $\pi (v)\in L(v)$ for all $v\in V$, then we say that $G$ is acyclically $L$-colorable. If $G$ is acyclically $L$-colorable for any list assignment $L$ with $|L(v)|\ge k$ for all $v\in V$, then $G$ is acyclically $k$-choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without 4-cycles is acyclically 4-choosable. However, this has been as yet verified only for some restricted classes of planar graphs. In this paper, we prove that every planar graph with neither 4-cycles nor intersecting $i$-cycles for each $i\in \{3,5\}$ is acyclically 4-choosable.
DOI :
10.21136/CMJ.2019.0197-18
Classification :
05C10, 05C15
Keywords: planar graph; acyclic coloring; choosability; intersecting cycle
Keywords: planar graph; acyclic coloring; choosability; intersecting cycle
@article{10_21136_CMJ_2019_0197_18,
author = {Sun, Yingcai and Chen, Min},
title = {Acyclic 4-choosability of planar graphs without 4-cycles},
journal = {Czechoslovak Mathematical Journal},
pages = {161--178},
publisher = {mathdoc},
volume = {70},
number = {1},
year = {2020},
doi = {10.21136/CMJ.2019.0197-18},
mrnumber = {4078351},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0197-18/}
}
TY - JOUR AU - Sun, Yingcai AU - Chen, Min TI - Acyclic 4-choosability of planar graphs without 4-cycles JO - Czechoslovak Mathematical Journal PY - 2020 SP - 161 EP - 178 VL - 70 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0197-18/ DO - 10.21136/CMJ.2019.0197-18 LA - en ID - 10_21136_CMJ_2019_0197_18 ER -
%0 Journal Article %A Sun, Yingcai %A Chen, Min %T Acyclic 4-choosability of planar graphs without 4-cycles %J Czechoslovak Mathematical Journal %D 2020 %P 161-178 %V 70 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0197-18/ %R 10.21136/CMJ.2019.0197-18 %G en %F 10_21136_CMJ_2019_0197_18
Sun, Yingcai; Chen, Min. Acyclic 4-choosability of planar graphs without 4-cycles. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 161-178. doi: 10.21136/CMJ.2019.0197-18
Cité par Sources :