Keywords: derived equivalence; tilting complex; generalized matrix algebra
@article{10_21136_CMJ_2019_0196_18,
author = {Chen, QingHua and Liu, HongJin},
title = {Derived equivalences between generalized matrix algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {147--160},
year = {2020},
volume = {70},
number = {1},
doi = {10.21136/CMJ.2019.0196-18},
mrnumber = {4078350},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0196-18/}
}
TY - JOUR AU - Chen, QingHua AU - Liu, HongJin TI - Derived equivalences between generalized matrix algebras JO - Czechoslovak Mathematical Journal PY - 2020 SP - 147 EP - 160 VL - 70 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0196-18/ DO - 10.21136/CMJ.2019.0196-18 LA - en ID - 10_21136_CMJ_2019_0196_18 ER -
%0 Journal Article %A Chen, QingHua %A Liu, HongJin %T Derived equivalences between generalized matrix algebras %J Czechoslovak Mathematical Journal %D 2020 %P 147-160 %V 70 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0196-18/ %R 10.21136/CMJ.2019.0196-18 %G en %F 10_21136_CMJ_2019_0196_18
Chen, QingHua; Liu, HongJin. Derived equivalences between generalized matrix algebras. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 147-160. doi: 10.21136/CMJ.2019.0196-18
[1] Asashiba, H.: A covering technique for derived equivalence. J. Algebra 191 (1997), 382-415. | DOI | MR | JFM
[2] Assem, I., Brüstle, T., Schiffler, R., Todorov, G.: Cluster categories and duplicated algebras. J. Algebra 305 (2006), 548-561. | DOI | MR | JFM
[3] Assem, I., Brüstle, T., Schiffler, R., Todorov, G.: $m$-cluster categories and $m$-replicated algebras. J. Pure Appl. Algebra 212 (2008), 884-901. | DOI | MR | JFM
[4] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge (2006). | DOI | MR | JFM
[5] Enochs, E., Torrecillas, B.: Flat covers over formal triangular matrix rings and minimal Quillen factorizations. Forum Math. 23 (2011), 611-624. | DOI | MR | JFM
[6] Gao, N., Psaroudakis, C.: Gorenstein homological aspects of monomorphism categories via Morita rings. Algebr. Represent. Theory 20 (2017), 487-529. | DOI | MR | JFM
[7] Green, E. L.: On the representation theory of rings in matrix form. Pac. J. Math. 100 (1982), 123-138. | DOI | MR | JFM
[8] Green, E. L., Psaroudakis, C.: On Artin algebras arising from Morita contexts. Algebr. Represent. Theory 17 (2014), 1485-1525. | DOI | MR | JFM
[9] Happel, D., Seidel, U.: Piecewise hereditary Nakayama algebras. Algebr. Represent. Theory 13 (2010), 693-704. | DOI | MR | JFM
[10] Herscovich, E., Solotar, A.: Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions. J. Algebra 315 (2007), 852-873. | DOI | MR | JFM
[11] Iversen, B.: Cohomology of Sheaves. Universitext, Springer, Berlin (1986). | DOI | MR | JFM
[12] Ladkani, S.: On derived equivalences of lines, rectangles and triangles. J. Lond. Math. Soc., II. Ser. 87 (2013), 157-176. | DOI | MR | JFM
[13] Li, L.: Stratifications of finite directed categories and generalized APR tilting modules. Commun. Algebra 43 (2015), 1723-1741. | DOI | MR | JFM
[14] Li, L.: Derived equivalences between triangular matrix algebras. Commun. Algebra 46 (2018), 615-628. | DOI | MR | JFM
[15] Miličić, D.: Lectures on Derived Categories. Available at http://www.math.utah.edu/ {milicic/Eprints/dercat.pdf}.
[16] Miyachi, J.-I.: Extensions of rings and tilting complexes. J. Pure Appl. Algebra 105 (1995), 183-194. | DOI | MR | JFM
[17] Rickard, J.: Derived categories and stable equivalence. J. Pure Appl. Algebra 61 (1989), 303-317. | DOI | MR | JFM
[18] Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. | DOI | MR | JFM
[19] Rickard, J.: Derived equivalences as derived functors. J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. | DOI | MR | JFM
[20] Xi, C.: Constructions of derived equivalences for algebras and rings. Front. Math. China 12 (2017), 1-18. | DOI | MR | JFM
[21] Zhang, S.: Partial tilting modules over $m$-replicated algebras. J. Algebra 323 (2010), 2538-2546. | DOI | MR | JFM
Cité par Sources :