Derived equivalences between generalized matrix algebras
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 147-160
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We construct derived equivalences between generalized matrix algebras. We record several corollaries. In particular, we show that the $n$-replicated algebras of two derived equivalent, finite-dimensional algebras are also derived equivalent.
We construct derived equivalences between generalized matrix algebras. We record several corollaries. In particular, we show that the $n$-replicated algebras of two derived equivalent, finite-dimensional algebras are also derived equivalent.
DOI : 10.21136/CMJ.2019.0196-18
Classification : 16E35, 16G10, 16S50
Keywords: derived equivalence; tilting complex; generalized matrix algebra
@article{10_21136_CMJ_2019_0196_18,
     author = {Chen, QingHua and Liu, HongJin},
     title = {Derived equivalences between generalized matrix algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {147--160},
     year = {2020},
     volume = {70},
     number = {1},
     doi = {10.21136/CMJ.2019.0196-18},
     mrnumber = {4078350},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0196-18/}
}
TY  - JOUR
AU  - Chen, QingHua
AU  - Liu, HongJin
TI  - Derived equivalences between generalized matrix algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 147
EP  - 160
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0196-18/
DO  - 10.21136/CMJ.2019.0196-18
LA  - en
ID  - 10_21136_CMJ_2019_0196_18
ER  - 
%0 Journal Article
%A Chen, QingHua
%A Liu, HongJin
%T Derived equivalences between generalized matrix algebras
%J Czechoslovak Mathematical Journal
%D 2020
%P 147-160
%V 70
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0196-18/
%R 10.21136/CMJ.2019.0196-18
%G en
%F 10_21136_CMJ_2019_0196_18
Chen, QingHua; Liu, HongJin. Derived equivalences between generalized matrix algebras. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 147-160. doi: 10.21136/CMJ.2019.0196-18

[1] Asashiba, H.: A covering technique for derived equivalence. J. Algebra 191 (1997), 382-415. | DOI | MR | JFM

[2] Assem, I., Brüstle, T., Schiffler, R., Todorov, G.: Cluster categories and duplicated algebras. J. Algebra 305 (2006), 548-561. | DOI | MR | JFM

[3] Assem, I., Brüstle, T., Schiffler, R., Todorov, G.: $m$-cluster categories and $m$-replicated algebras. J. Pure Appl. Algebra 212 (2008), 884-901. | DOI | MR | JFM

[4] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge (2006). | DOI | MR | JFM

[5] Enochs, E., Torrecillas, B.: Flat covers over formal triangular matrix rings and minimal Quillen factorizations. Forum Math. 23 (2011), 611-624. | DOI | MR | JFM

[6] Gao, N., Psaroudakis, C.: Gorenstein homological aspects of monomorphism categories via Morita rings. Algebr. Represent. Theory 20 (2017), 487-529. | DOI | MR | JFM

[7] Green, E. L.: On the representation theory of rings in matrix form. Pac. J. Math. 100 (1982), 123-138. | DOI | MR | JFM

[8] Green, E. L., Psaroudakis, C.: On Artin algebras arising from Morita contexts. Algebr. Represent. Theory 17 (2014), 1485-1525. | DOI | MR | JFM

[9] Happel, D., Seidel, U.: Piecewise hereditary Nakayama algebras. Algebr. Represent. Theory 13 (2010), 693-704. | DOI | MR | JFM

[10] Herscovich, E., Solotar, A.: Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions. J. Algebra 315 (2007), 852-873. | DOI | MR | JFM

[11] Iversen, B.: Cohomology of Sheaves. Universitext, Springer, Berlin (1986). | DOI | MR | JFM

[12] Ladkani, S.: On derived equivalences of lines, rectangles and triangles. J. Lond. Math. Soc., II. Ser. 87 (2013), 157-176. | DOI | MR | JFM

[13] Li, L.: Stratifications of finite directed categories and generalized APR tilting modules. Commun. Algebra 43 (2015), 1723-1741. | DOI | MR | JFM

[14] Li, L.: Derived equivalences between triangular matrix algebras. Commun. Algebra 46 (2018), 615-628. | DOI | MR | JFM

[15] Miličić, D.: Lectures on Derived Categories. Available at http://www.math.utah.edu/ {milicic/Eprints/dercat.pdf}.

[16] Miyachi, J.-I.: Extensions of rings and tilting complexes. J. Pure Appl. Algebra 105 (1995), 183-194. | DOI | MR | JFM

[17] Rickard, J.: Derived categories and stable equivalence. J. Pure Appl. Algebra 61 (1989), 303-317. | DOI | MR | JFM

[18] Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. | DOI | MR | JFM

[19] Rickard, J.: Derived equivalences as derived functors. J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. | DOI | MR | JFM

[20] Xi, C.: Constructions of derived equivalences for algebras and rings. Front. Math. China 12 (2017), 1-18. | DOI | MR | JFM

[21] Zhang, S.: Partial tilting modules over $m$-replicated algebras. J. Algebra 323 (2010), 2538-2546. | DOI | MR | JFM

Cité par Sources :