The torsion theory and the Melkersson condition
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 121-145 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a generalization of the notion of torsion theory, which is associated with a Serre subcategory over a commutative Noetherian ring. In 2008 Aghapournahr and Melkersson investigated the question of when local cohomology modules belong to a Serre subcategory of the module category. In their study, the notion of Melkersson condition was defined as a suitable condition in local cohomology theory. One of our purposes in this paper is to show how naturally the concept of Melkersson condition appears in the context of torsion theories.
We consider a generalization of the notion of torsion theory, which is associated with a Serre subcategory over a commutative Noetherian ring. In 2008 Aghapournahr and Melkersson investigated the question of when local cohomology modules belong to a Serre subcategory of the module category. In their study, the notion of Melkersson condition was defined as a suitable condition in local cohomology theory. One of our purposes in this paper is to show how naturally the concept of Melkersson condition appears in the context of torsion theories.
DOI : 10.21136/CMJ.2019.0193-18
Classification : 13C60, 13D30
Keywords: Melkersson condition; Serre subcategory; torsion theory
@article{10_21136_CMJ_2019_0193_18,
     author = {Yoshizawa, Takeshi},
     title = {The torsion theory and the {Melkersson} condition},
     journal = {Czechoslovak Mathematical Journal},
     pages = {121--145},
     year = {2020},
     volume = {70},
     number = {1},
     doi = {10.21136/CMJ.2019.0193-18},
     mrnumber = {4078349},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0193-18/}
}
TY  - JOUR
AU  - Yoshizawa, Takeshi
TI  - The torsion theory and the Melkersson condition
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 121
EP  - 145
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0193-18/
DO  - 10.21136/CMJ.2019.0193-18
LA  - en
ID  - 10_21136_CMJ_2019_0193_18
ER  - 
%0 Journal Article
%A Yoshizawa, Takeshi
%T The torsion theory and the Melkersson condition
%J Czechoslovak Mathematical Journal
%D 2020
%P 121-145
%V 70
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0193-18/
%R 10.21136/CMJ.2019.0193-18
%G en
%F 10_21136_CMJ_2019_0193_18
Yoshizawa, Takeshi. The torsion theory and the Melkersson condition. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 121-145. doi: 10.21136/CMJ.2019.0193-18

[1] Aghapournahr, M., Melkersson, L.: Local cohomology and Serre subcategories. J. Algebra 320 (2008), 1275-1287. | DOI | MR | JFM

[2] Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories. Mem. Am. Math. Soc. 883 (2007), 207 pages. | DOI | MR | JFM

[3] Dickson, S. E.: A torsion theory for Abelian categories. Trans. Am. Math. Soc. 121 (1966), 223-235. | DOI | MR | JFM

[4] Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. Fr. 90 (1962), 323-448 French. | DOI | MR | JFM

[5] Lambek, J.: Torsion Theories, Additive Semantics, and Rings of Quotients. Lecture Notes in Mathematics 177, Springer, Berlin (1971). | DOI | MR | JFM

[6] Stenström, B.: Rings and Modules of Quotients. Lecture Notes in Mathematics 237, Springer, Berlin (1971). | DOI | MR | JFM

[7] Stenström, B.: Rings of Quotients. An Introduction to Methods of Ring Theory. Die Grundlehren der Mathematischen Wissenschaften 217, Springer, Berlin (1975). | DOI | MR | JFM

[8] Yoshizawa, T.: Subcategories of extension modules by Serre subcategories. Proc. Am. Math. Soc. 140 (2012), 2293-2305. | DOI | MR | JFM

[9] Yoshizawa, T.: On the closedness of taking injective hulls of several Serre subcategories. Commun. Algebra 45 (2017), 4846-4854. | DOI | MR | JFM

Cité par Sources :