The torsion theory and the Melkersson condition
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 121-145.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider a generalization of the notion of torsion theory, which is associated with a Serre subcategory over a commutative Noetherian ring. In 2008 Aghapournahr and Melkersson investigated the question of when local cohomology modules belong to a Serre subcategory of the module category. In their study, the notion of Melkersson condition was defined as a suitable condition in local cohomology theory. One of our purposes in this paper is to show how naturally the concept of Melkersson condition appears in the context of torsion theories.
DOI : 10.21136/CMJ.2019.0193-18
Classification : 13C60, 13D30
Keywords: Melkersson condition; Serre subcategory; torsion theory
@article{10_21136_CMJ_2019_0193_18,
     author = {Yoshizawa, Takeshi},
     title = {The torsion theory and the {Melkersson} condition},
     journal = {Czechoslovak Mathematical Journal},
     pages = {121--145},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2020},
     doi = {10.21136/CMJ.2019.0193-18},
     mrnumber = {4078349},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0193-18/}
}
TY  - JOUR
AU  - Yoshizawa, Takeshi
TI  - The torsion theory and the Melkersson condition
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 121
EP  - 145
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0193-18/
DO  - 10.21136/CMJ.2019.0193-18
LA  - en
ID  - 10_21136_CMJ_2019_0193_18
ER  - 
%0 Journal Article
%A Yoshizawa, Takeshi
%T The torsion theory and the Melkersson condition
%J Czechoslovak Mathematical Journal
%D 2020
%P 121-145
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0193-18/
%R 10.21136/CMJ.2019.0193-18
%G en
%F 10_21136_CMJ_2019_0193_18
Yoshizawa, Takeshi. The torsion theory and the Melkersson condition. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 121-145. doi : 10.21136/CMJ.2019.0193-18. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0193-18/

Cité par Sources :