Keywords: elliptic curve; congruent number problem; Selmer group
@article{10_21136_CMJ_2019_0171_18,
author = {Vre\'cica, Ilija S.},
title = {Joint distribution for the {Selmer} ranks of the congruent number curves},
journal = {Czechoslovak Mathematical Journal},
pages = {105--119},
year = {2020},
volume = {70},
number = {1},
doi = {10.21136/CMJ.2019.0171-18},
mrnumber = {4078348},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0171-18/}
}
TY - JOUR AU - Vrećica, Ilija S. TI - Joint distribution for the Selmer ranks of the congruent number curves JO - Czechoslovak Mathematical Journal PY - 2020 SP - 105 EP - 119 VL - 70 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0171-18/ DO - 10.21136/CMJ.2019.0171-18 LA - en ID - 10_21136_CMJ_2019_0171_18 ER -
%0 Journal Article %A Vrećica, Ilija S. %T Joint distribution for the Selmer ranks of the congruent number curves %J Czechoslovak Mathematical Journal %D 2020 %P 105-119 %V 70 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0171-18/ %R 10.21136/CMJ.2019.0171-18 %G en %F 10_21136_CMJ_2019_0171_18
Vrećica, Ilija S. Joint distribution for the Selmer ranks of the congruent number curves. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 105-119. doi: 10.21136/CMJ.2019.0171-18
[1] Brent, R. P., McKay, B. D.: Determinants and ranks of random matrices over $\mathbb{Z}_m$. Discrete Math. 66 (1987), 35-49. | DOI | MR | JFM
[2] Faulkner, B., James, K.: A graphical approach to computing Selmer groups of congruent number curves. Ramanujan J. 14 (2007), 107-129. | DOI | MR | JFM
[3] Feng, K.: Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture. Acta Arith. 75 (1996), 71-83. | DOI | MR | JFM
[4] Feng, K., Xiong, M.: On elliptic curves $y^2=x^3-n^2x$ with rank zero. J. Number Theory 109 (2004), 1-26. | DOI | MR | JFM
[5] Heath-Brown, D. R.: The size of Selmer groups for the congruent number problem. Invent. Math. 111 (1993), 171-195. | DOI | MR | JFM
[6] Heath-Brown, D. R.: The size of Selmer groups for the congruent number problem II. Invent. Math. 118 (1994), 331-370. | DOI | MR | JFM
[7] Kane, D., Klagsbrun, Z.: On the joint distribution of $ Sel_\Phi (E/\mathbb{Q})$ and $ Sel_{\widehat{\Phi}}(E'/\mathbb{Q})$ in quadratic twist families. Available at , 25 pages. | arXiv
[8] Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. Graduate Texts in Mathematics 97, Springer, New York (1984). | DOI | MR | JFM
[9] Rhoades, R. C.: $2$-Selmer groups and the Birch-Swinnerton-Dyer conjecture for the congruent number curves. J. Number Theory 129 (2009), 1379-1391. | DOI | MR | JFM
[10] Xiong, M., Zaharescu, A.: Selmer groups and Tate-Shafarevich groups for the congruent number problem. Comment. Math. Helv. 84 (2009), 21-56. | DOI | MR | JFM
Cité par Sources :