Joint distribution for the Selmer ranks of the congruent number curves
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 105-119
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We determine the distribution over square-free integers $n$ of the pair $(\dim _{\mathbb {F}_2}{\rm Sel}^\Phi (E_n/\mathbb {Q}),\dim _{\mathbb {F}_2} {\rm Sel}^{\widehat {\Phi }}(E_n'/\mathbb {Q}))$, where $E_n$ is a curve in the congruent number curve family, $E_n'\colon y^2=x^3+4n^2x$ is the image of isogeny $\Phi \colon E_n\rightarrow E_n'$, $\Phi (x,y)=(y^2/x^2,y(n^2-x^2)/x^2)$, and $\widehat {\Phi }$ is the isogeny dual to $\Phi $.
We determine the distribution over square-free integers $n$ of the pair $(\dim _{\mathbb {F}_2}{\rm Sel}^\Phi (E_n/\mathbb {Q}),\dim _{\mathbb {F}_2} {\rm Sel}^{\widehat {\Phi }}(E_n'/\mathbb {Q}))$, where $E_n$ is a curve in the congruent number curve family, $E_n'\colon y^2=x^3+4n^2x$ is the image of isogeny $\Phi \colon E_n\rightarrow E_n'$, $\Phi (x,y)=(y^2/x^2,y(n^2-x^2)/x^2)$, and $\widehat {\Phi }$ is the isogeny dual to $\Phi $.
DOI :
10.21136/CMJ.2019.0171-18
Classification :
11G05, 11N45, 14H52
Keywords: elliptic curve; congruent number problem; Selmer group
Keywords: elliptic curve; congruent number problem; Selmer group
@article{10_21136_CMJ_2019_0171_18,
author = {Vre\'cica, Ilija S.},
title = {Joint distribution for the {Selmer} ranks of the congruent number curves},
journal = {Czechoslovak Mathematical Journal},
pages = {105--119},
year = {2020},
volume = {70},
number = {1},
doi = {10.21136/CMJ.2019.0171-18},
mrnumber = {4078348},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0171-18/}
}
TY - JOUR AU - Vrećica, Ilija S. TI - Joint distribution for the Selmer ranks of the congruent number curves JO - Czechoslovak Mathematical Journal PY - 2020 SP - 105 EP - 119 VL - 70 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0171-18/ DO - 10.21136/CMJ.2019.0171-18 LA - en ID - 10_21136_CMJ_2019_0171_18 ER -
%0 Journal Article %A Vrećica, Ilija S. %T Joint distribution for the Selmer ranks of the congruent number curves %J Czechoslovak Mathematical Journal %D 2020 %P 105-119 %V 70 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0171-18/ %R 10.21136/CMJ.2019.0171-18 %G en %F 10_21136_CMJ_2019_0171_18
Vrećica, Ilija S. Joint distribution for the Selmer ranks of the congruent number curves. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 105-119. doi: 10.21136/CMJ.2019.0171-18
Cité par Sources :