Keywords: plane curve; space curve; general-affine group; general-affine curvature; variational problem
@article{10_21136_CMJ_2019_0165_18,
author = {Kobayashi, Shimpei and Sasaki, Takeshi},
title = {General-affine invariants of plane curves and space curves},
journal = {Czechoslovak Mathematical Journal},
pages = {67--104},
year = {2020},
volume = {70},
number = {1},
doi = {10.21136/CMJ.2019.0165-18},
mrnumber = {4078347},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0165-18/}
}
TY - JOUR AU - Kobayashi, Shimpei AU - Sasaki, Takeshi TI - General-affine invariants of plane curves and space curves JO - Czechoslovak Mathematical Journal PY - 2020 SP - 67 EP - 104 VL - 70 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0165-18/ DO - 10.21136/CMJ.2019.0165-18 LA - en ID - 10_21136_CMJ_2019_0165_18 ER -
%0 Journal Article %A Kobayashi, Shimpei %A Sasaki, Takeshi %T General-affine invariants of plane curves and space curves %J Czechoslovak Mathematical Journal %D 2020 %P 67-104 %V 70 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0165-18/ %R 10.21136/CMJ.2019.0165-18 %G en %F 10_21136_CMJ_2019_0165_18
Kobayashi, Shimpei; Sasaki, Takeshi. General-affine invariants of plane curves and space curves. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 67-104. doi: 10.21136/CMJ.2019.0165-18
[1] Bagderina, Y. Y.: Equivalence of third-order ordinary differential equations to Chazy equations I--XIII. Stud. Appl. Math. 120 (2008), 293-332. | DOI | MR | JFM
[2] Berzolari, L.: Sugli invarianti differenziali proiettivi delle curve di un iperspazio. Annali di Math., Ser 2 Italian 26 (1897), 1-58 \99999JFM99999 28.0584.04. | DOI
[3] Blaschke, W.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. II. Affine Differentialgeometrie, bearbeitet von K. Reidemeister. Springer, Berlin German (1923),\99999JFM99999 49.0499.01. | MR
[4] Bol, G.: Projektive Differentialgeometrie. I. Teil. Vandenhoeck & Ruprecht, Göttingen German (1950). | MR | JFM
[5] Calugareanu, G., Gheorghiu, G. T.: Sur l'interprétation géométrique des invariants différentiels fondamentaux en géométrie affine et projective des courbes planes. Bull. Math. Soc. Roum. Sci. 43 French (1941), 69-83. | MR | JFM
[6] Cartan, E.: Sur un problème du calcul des variations en géométrie projective plane. Moscou, Rec. Math. 34 French (1927), 349-364 \99999JFM99999 53.0486.01.
[7] Cartan, E.: Lecons sur la théorie des espaces à connexion projective. Cahiers scient. 17, Gauthier-Villars. VI, Paris French (1937). | MR | JFM
[8] Chazy, J.: Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes. Acta Math. 34 French (1911), 317-385 \99999JFM99999 42.0340.03. | DOI | MR
[9] Chou, K.-S., Qu, C.: Integrable equations arising from motions of plane curves. Physica D 162 (2002), 9-33. | DOI | MR | JFM
[10] Fubini, G., Čech, E.: Introduction à la géométrie projective différentielle des surfaces. Gauthier-Villars and Cie VI, Paris French (1931). | MR | JFM
[11] Griffiths, P. A.: Exterior Differential Systems and the Calculus of Variations. Progress in Mathematics 25, Birkhäuser/Springer, Basel (1983). | DOI | MR | JFM
[12] Halphen, G. H.: Sur les invariants différentielles. Oeuvre II Gauthier-Villars, Paris French (1918), 197-257 \99999JFM99999 46.1418.01.
[13] Izumiya, S., Sano, T.: Generic affine differential geometry of plane curves. Proc. Edinb. Math. Soc., II. Ser. 41 (1998), 315-324. | DOI | MR | JFM
[14] Kimpara, M.: Sur les problèmes du calcul des variations en géométrie différentielle projective des courbes gauches. Proc. Phys.-Math. Soc. Japan, III. Ser. 19 French (1937), 977-983. | DOI | JFM
[15] Lane, E. P.: A Treatise on Projective Differential Geometry. University of Chicago Press, Chicago (1942). | MR | JFM
[16] Beffa, G. Marí: Hamiltonian evolution of curves in classical affine geometries. Physica D 238 (2009), 100-115. | DOI | MR | JFM
[17] Mihăilescu, T.: Géométrie différentielle affine des courbes planes. Czech. Math. J. 9 French (1959), 265-288. | MR | JFM
[18] Mihăilescu, T.: Sobre la variacion del arco afin de las curvas planas. Math. Notae 17 Spanish (1961), 59-81. | MR | JFM
[19] Mihăilescu, T.: Geometria diferencial afin general de las curvas alabeadas. Math. Notae 18 Spanish (1963), 23-70. | MR | JFM
[20] Monge, G.: Sur les équations différentielles des courbes du second degré. Corresp. sur l'École imp. Polytechnique Klostermann, Paris M. Hachette French (1810), 51-54.
[21] Musso, E.: Motions of curves in the projective plane inducing the Kaup-Kupershmidt hierarchy. SIGMA, Symmetry Integrability Geom. Methods Appl. 8 (2012), paper 030, 20 pages. | DOI | MR | JFM
[22] Musso, E., Grant, J. D. E.: Coisotropic variational problems. J. Geom. Phys. 50 (2004), 303-338. | DOI | MR | JFM
[23] Musso, E., Nicolodi, L.: Reduction for the projective arclength functional. Forum Math. 17 (2005), 569-590. | DOI | MR | JFM
[24] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge Tracts in Mathematics 111, Cambridge University Press, Cambridge (1994). | MR | JFM
[25] Olver, P. J., Sapiro, G., Tannenbaum, A.: Classification and uniqueness of invariant geometric flows. C. R. Acad. Sci., Paris, Sér. I 319 (1994), 339-344. | MR | JFM
[26] Ovsienko, V., Tabachnikov, S.: Projective Differential Geometry Old and New. From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups. Cambridge Tracts in Mathematics 165, Cambridge University Press, Cambridge (2005). | DOI | MR | JFM
[27] Polyanin, A. D., Zaitsev, V. F.: Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press, Boca Raton (1995). | DOI | MR | JFM
[28] Sasaki, S.: Contributions to the affine and projective differential geometries of space curves. Jap. J. Math. 13 (1937), 473-481. | DOI | JFM
[29] Sasaki, T.: Projective Differential Geometry and Linear Homogeneous Differential Equations. Rokko Lectures in Mathematics 5, Kobe University (1999).
[30] Schirokow, P. A., Schirokow, A. P.: Affine Differentialgeometrie. B. G. Teubner, Leipzig German (1962). | MR | JFM
[31] Thorbergsson, G., Umehara, M.: Sextactic points on a simple closed curve. Nagoya Math. J. 167 (2002), 55-94. | DOI | MR | JFM
[32] Verpoort, S.: Curvature functionals for curves in the equi-affine plane. Czech. Math. J. 61 (2011), 419-435. | DOI | MR | JFM
[33] Wilczynski, E. J.: Projective Differential Geometry of Curves and Ruled Surfaces. B. G. Teubner, Leipzig German (1906),\99999JFM99999 37.0620.02. | DOI | MR
Cité par Sources :