General-affine invariants of plane curves and space curves
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 67-104 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present a fundamental theory of curves in the affine plane and the affine space, equipped with the general-affine groups ${\rm GA}(2)={\rm GL}(2,{\mathbb R})\ltimes {\mathbb R}^2$ and ${\rm GA}(3)={\rm GL}(3,{\mathbb R})\ltimes {\mathbb R}^3$, respectively. We define general-affine length parameter and curvatures and show how such invariants determine the curve up to general-affine motions. We then study the extremal problem of the general-affine length functional and derive a variational formula. We give several examples of curves and also discuss some relations with equiaffine treatment and projective treatment of curves.
We present a fundamental theory of curves in the affine plane and the affine space, equipped with the general-affine groups ${\rm GA}(2)={\rm GL}(2,{\mathbb R})\ltimes {\mathbb R}^2$ and ${\rm GA}(3)={\rm GL}(3,{\mathbb R})\ltimes {\mathbb R}^3$, respectively. We define general-affine length parameter and curvatures and show how such invariants determine the curve up to general-affine motions. We then study the extremal problem of the general-affine length functional and derive a variational formula. We give several examples of curves and also discuss some relations with equiaffine treatment and projective treatment of curves.
DOI : 10.21136/CMJ.2019.0165-18
Classification : 53A15, 53A20, 53A55
Keywords: plane curve; space curve; general-affine group; general-affine curvature; variational problem
@article{10_21136_CMJ_2019_0165_18,
     author = {Kobayashi, Shimpei and Sasaki, Takeshi},
     title = {General-affine invariants of plane curves and space curves},
     journal = {Czechoslovak Mathematical Journal},
     pages = {67--104},
     year = {2020},
     volume = {70},
     number = {1},
     doi = {10.21136/CMJ.2019.0165-18},
     mrnumber = {4078347},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0165-18/}
}
TY  - JOUR
AU  - Kobayashi, Shimpei
AU  - Sasaki, Takeshi
TI  - General-affine invariants of plane curves and space curves
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 67
EP  - 104
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0165-18/
DO  - 10.21136/CMJ.2019.0165-18
LA  - en
ID  - 10_21136_CMJ_2019_0165_18
ER  - 
%0 Journal Article
%A Kobayashi, Shimpei
%A Sasaki, Takeshi
%T General-affine invariants of plane curves and space curves
%J Czechoslovak Mathematical Journal
%D 2020
%P 67-104
%V 70
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0165-18/
%R 10.21136/CMJ.2019.0165-18
%G en
%F 10_21136_CMJ_2019_0165_18
Kobayashi, Shimpei; Sasaki, Takeshi. General-affine invariants of plane curves and space curves. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 67-104. doi: 10.21136/CMJ.2019.0165-18

[1] Bagderina, Y. Y.: Equivalence of third-order ordinary differential equations to Chazy equations I--XIII. Stud. Appl. Math. 120 (2008), 293-332. | DOI | MR | JFM

[2] Berzolari, L.: Sugli invarianti differenziali proiettivi delle curve di un iperspazio. Annali di Math., Ser 2 Italian 26 (1897), 1-58 \99999JFM99999 28.0584.04. | DOI

[3] Blaschke, W.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. II. Affine Differentialgeometrie, bearbeitet von K. Reidemeister. Springer, Berlin German (1923),\99999JFM99999 49.0499.01. | MR

[4] Bol, G.: Projektive Differentialgeometrie. I. Teil. Vandenhoeck & Ruprecht, Göttingen German (1950). | MR | JFM

[5] Calugareanu, G., Gheorghiu, G. T.: Sur l'interprétation géométrique des invariants différentiels fondamentaux en géométrie affine et projective des courbes planes. Bull. Math. Soc. Roum. Sci. 43 French (1941), 69-83. | MR | JFM

[6] Cartan, E.: Sur un problème du calcul des variations en géométrie projective plane. Moscou, Rec. Math. 34 French (1927), 349-364 \99999JFM99999 53.0486.01.

[7] Cartan, E.: Lecons sur la théorie des espaces à connexion projective. Cahiers scient. 17, Gauthier-Villars. VI, Paris French (1937). | MR | JFM

[8] Chazy, J.: Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes. Acta Math. 34 French (1911), 317-385 \99999JFM99999 42.0340.03. | DOI | MR

[9] Chou, K.-S., Qu, C.: Integrable equations arising from motions of plane curves. Physica D 162 (2002), 9-33. | DOI | MR | JFM

[10] Fubini, G., Čech, E.: Introduction à la géométrie projective différentielle des surfaces. Gauthier-Villars and Cie VI, Paris French (1931). | MR | JFM

[11] Griffiths, P. A.: Exterior Differential Systems and the Calculus of Variations. Progress in Mathematics 25, Birkhäuser/Springer, Basel (1983). | DOI | MR | JFM

[12] Halphen, G. H.: Sur les invariants différentielles. Oeuvre II Gauthier-Villars, Paris French (1918), 197-257 \99999JFM99999 46.1418.01.

[13] Izumiya, S., Sano, T.: Generic affine differential geometry of plane curves. Proc. Edinb. Math. Soc., II. Ser. 41 (1998), 315-324. | DOI | MR | JFM

[14] Kimpara, M.: Sur les problèmes du calcul des variations en géométrie différentielle projective des courbes gauches. Proc. Phys.-Math. Soc. Japan, III. Ser. 19 French (1937), 977-983. | DOI | JFM

[15] Lane, E. P.: A Treatise on Projective Differential Geometry. University of Chicago Press, Chicago (1942). | MR | JFM

[16] Beffa, G. Marí: Hamiltonian evolution of curves in classical affine geometries. Physica D 238 (2009), 100-115. | DOI | MR | JFM

[17] Mihăilescu, T.: Géométrie différentielle affine des courbes planes. Czech. Math. J. 9 French (1959), 265-288. | MR | JFM

[18] Mihăilescu, T.: Sobre la variacion del arco afin de las curvas planas. Math. Notae 17 Spanish (1961), 59-81. | MR | JFM

[19] Mihăilescu, T.: Geometria diferencial afin general de las curvas alabeadas. Math. Notae 18 Spanish (1963), 23-70. | MR | JFM

[20] Monge, G.: Sur les équations différentielles des courbes du second degré. Corresp. sur l'École imp. Polytechnique Klostermann, Paris M. Hachette French (1810), 51-54.

[21] Musso, E.: Motions of curves in the projective plane inducing the Kaup-Kupershmidt hierarchy. SIGMA, Symmetry Integrability Geom. Methods Appl. 8 (2012), paper 030, 20 pages. | DOI | MR | JFM

[22] Musso, E., Grant, J. D. E.: Coisotropic variational problems. J. Geom. Phys. 50 (2004), 303-338. | DOI | MR | JFM

[23] Musso, E., Nicolodi, L.: Reduction for the projective arclength functional. Forum Math. 17 (2005), 569-590. | DOI | MR | JFM

[24] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge Tracts in Mathematics 111, Cambridge University Press, Cambridge (1994). | MR | JFM

[25] Olver, P. J., Sapiro, G., Tannenbaum, A.: Classification and uniqueness of invariant geometric flows. C. R. Acad. Sci., Paris, Sér. I 319 (1994), 339-344. | MR | JFM

[26] Ovsienko, V., Tabachnikov, S.: Projective Differential Geometry Old and New. From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups. Cambridge Tracts in Mathematics 165, Cambridge University Press, Cambridge (2005). | DOI | MR | JFM

[27] Polyanin, A. D., Zaitsev, V. F.: Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press, Boca Raton (1995). | DOI | MR | JFM

[28] Sasaki, S.: Contributions to the affine and projective differential geometries of space curves. Jap. J. Math. 13 (1937), 473-481. | DOI | JFM

[29] Sasaki, T.: Projective Differential Geometry and Linear Homogeneous Differential Equations. Rokko Lectures in Mathematics 5, Kobe University (1999).

[30] Schirokow, P. A., Schirokow, A. P.: Affine Differentialgeometrie. B. G. Teubner, Leipzig German (1962). | MR | JFM

[31] Thorbergsson, G., Umehara, M.: Sextactic points on a simple closed curve. Nagoya Math. J. 167 (2002), 55-94. | DOI | MR | JFM

[32] Verpoort, S.: Curvature functionals for curves in the equi-affine plane. Czech. Math. J. 61 (2011), 419-435. | DOI | MR | JFM

[33] Wilczynski, E. J.: Projective Differential Geometry of Curves and Ruled Surfaces. B. G. Teubner, Leipzig German (1906),\99999JFM99999 37.0620.02. | DOI | MR

Cité par Sources :