Keywords: evolution equation; hyperbolic inverse mean curvature flow; short time existence
@article{10_21136_CMJ_2019_0162_18,
author = {Mao, Jing and Wu, Chuan-Xi and Zhou, Zhe},
title = {Hyperbolic inverse mean curvature flow},
journal = {Czechoslovak Mathematical Journal},
pages = {33--66},
year = {2020},
volume = {70},
number = {1},
doi = {10.21136/CMJ.2019.0162-18},
mrnumber = {4078346},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0162-18/}
}
TY - JOUR AU - Mao, Jing AU - Wu, Chuan-Xi AU - Zhou, Zhe TI - Hyperbolic inverse mean curvature flow JO - Czechoslovak Mathematical Journal PY - 2020 SP - 33 EP - 66 VL - 70 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0162-18/ DO - 10.21136/CMJ.2019.0162-18 LA - en ID - 10_21136_CMJ_2019_0162_18 ER -
Mao, Jing; Wu, Chuan-Xi; Zhou, Zhe. Hyperbolic inverse mean curvature flow. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 33-66. doi: 10.21136/CMJ.2019.0162-18
[1] Bray, H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59 (2001), 177-267. | DOI | MR | JFM
[2] Brendle, S., Hung, P.-K., Wang, M.-T.: A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold. Commun. Pure Appl. Math. 69 (2016), 124-144. | DOI | MR | JFM
[3] Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations. III: Functions of the eigenvalue of the Hessian. Acta Math. 155 (1985), 261-301. | DOI | MR | JFM
[4] Cao, F.: Geometric Curve Evolution and Image Processing. Lecture Notes in Mathematics 1805, Springer, Berlin (2003). | DOI | MR | JFM
[5] Chen, L., Mao, J.: Non-parametric inverse curvature flows in the AdS-Schwarzschild manifold. J. Geom. Anal. 28 (2018), 921-949. | DOI | MR | JFM
[6] Chen, L., Mao, J., Xiang, N., Xu,, C.: Inverse mean curvature flow inside a cone in warped products. Available at , 12 pages. | arXiv
[7] Evans, L.-C.: Partial Differential Equations. Graduate Studies in Mathematics 19, American Mathematical Society, Providence (1998). | MR | JFM
[8] Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differential Geom. 32 (1990), 299-314. | DOI | MR | JFM
[9] He, C.-L., Kong, D.-X., Liu, K.-F.: Hyperbolic mean curvature flow. J. Differ. Equations 246 (2009), 373-390. | DOI | MR | JFM
[10] Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Mathématiques & Applications 26, Springer, Berlin (1997). | MR | JFM
[11] Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20 (1984), 237-266. | DOI | MR | JFM
[12] Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59 (2001), 353-437. | DOI | MR | JFM
[13] Kong, D.-X., Liu, K.-F., Wang, Z.-G.: Hyperbolic mean curvature flow: evolution of plane curves. Acta Math. Sci., Ser B 29 (2009), 493-514. | DOI | MR | JFM
[14] Mao, J.: Forced hyperbolic mean curvature flow. Kodai Math. J. 35 (2012), 500-522. | DOI | MR | JFM
[15] Marquardt, T.: Inverse mean curvature flow for star-shaped hypersurfaces evolving in a cone. J. Geom. Anal. 23 (2013), 1303-1313. | DOI | MR | JFM
[16] Pipoli, G.: Inverse mean curvature flow in quaternionic hyperbolic space. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), 153-171. | DOI | MR | JFM
[17] Pipoli, G.: Inverse mean curvature flow in complex hyperbolic space. Available at , 31 pages. | arXiv | MR
[18] Protter, M.-H., Weinberger, H.-F.: Maximum Principles in Differential Equations. Springer, New York (1984). | MR | JFM
[19] Scheuer, J.: The inverse mean curvature flow in warped cylinders of non-positive radial curvature. Adv. Math. 306 (2017), 1130-1163. | DOI | MR | JFM
[20] Schneider, R.: Convex Bodies: The Brum-Minkowski Theory. Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge (1993). | DOI | MR | JFM
[21] Topping, P.: Mean curvature flow and geometric inequalities. J. Reine Angew. Math. 503 (1998), 47-61. | DOI | MR | JFM
[22] Yau, S.-T.: Review of geometry and analysis. Asian J. Math. 4 (2000), 235-278. | DOI | MR | JFM
[23] Zhou, H.-Y.: Inverse mean curvature flows in warped product manifolds. J. Geom. Anal. 28 (2018), 1749-1772. | DOI | MR | JFM
[24] Zhu, X.-P.: Lectures on Mean Curvature Flows. AMS/IP Studies in Advanced Mathematics 32, American Mathematical Society, Providence (2002). | DOI | MR | JFM
Cité par Sources :