Hyperbolic inverse mean curvature flow
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 33-66
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove the short-time existence of the hyperbolic inverse (mean) curvature flow (with or without the specified forcing term) under the assumption that the initial compact smooth hypersurface of $\mathbb {R}^{n+1}$ ($n\ge 2$) is mean convex and star-shaped. Several interesting examples and some hyperbolic evolution equations for geometric quantities of the evolving hypersurfaces are shown. Besides, under different assumptions for the initial velocity, we can get the expansion and the convergence results of a hyperbolic inverse mean curvature flow in the plane $\mathbb {R}^2$, whose evolving curves move normally.
We prove the short-time existence of the hyperbolic inverse (mean) curvature flow (with or without the specified forcing term) under the assumption that the initial compact smooth hypersurface of $\mathbb {R}^{n+1}$ ($n\ge 2$) is mean convex and star-shaped. Several interesting examples and some hyperbolic evolution equations for geometric quantities of the evolving hypersurfaces are shown. Besides, under different assumptions for the initial velocity, we can get the expansion and the convergence results of a hyperbolic inverse mean curvature flow in the plane $\mathbb {R}^2$, whose evolving curves move normally.
DOI : 10.21136/CMJ.2019.0162-18
Classification : 58J45, 58J47
Keywords: evolution equation; hyperbolic inverse mean curvature flow; short time existence
@article{10_21136_CMJ_2019_0162_18,
     author = {Mao, Jing and Wu, Chuan-Xi and Zhou, Zhe},
     title = {Hyperbolic inverse mean curvature flow},
     journal = {Czechoslovak Mathematical Journal},
     pages = {33--66},
     year = {2020},
     volume = {70},
     number = {1},
     doi = {10.21136/CMJ.2019.0162-18},
     mrnumber = {4078346},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0162-18/}
}
TY  - JOUR
AU  - Mao, Jing
AU  - Wu, Chuan-Xi
AU  - Zhou, Zhe
TI  - Hyperbolic inverse mean curvature flow
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 33
EP  - 66
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0162-18/
DO  - 10.21136/CMJ.2019.0162-18
LA  - en
ID  - 10_21136_CMJ_2019_0162_18
ER  - 
%0 Journal Article
%A Mao, Jing
%A Wu, Chuan-Xi
%A Zhou, Zhe
%T Hyperbolic inverse mean curvature flow
%J Czechoslovak Mathematical Journal
%D 2020
%P 33-66
%V 70
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0162-18/
%R 10.21136/CMJ.2019.0162-18
%G en
%F 10_21136_CMJ_2019_0162_18
Mao, Jing; Wu, Chuan-Xi; Zhou, Zhe. Hyperbolic inverse mean curvature flow. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 33-66. doi: 10.21136/CMJ.2019.0162-18

[1] Bray, H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59 (2001), 177-267. | DOI | MR | JFM

[2] Brendle, S., Hung, P.-K., Wang, M.-T.: A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold. Commun. Pure Appl. Math. 69 (2016), 124-144. | DOI | MR | JFM

[3] Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations. III: Functions of the eigenvalue of the Hessian. Acta Math. 155 (1985), 261-301. | DOI | MR | JFM

[4] Cao, F.: Geometric Curve Evolution and Image Processing. Lecture Notes in Mathematics 1805, Springer, Berlin (2003). | DOI | MR | JFM

[5] Chen, L., Mao, J.: Non-parametric inverse curvature flows in the AdS-Schwarzschild manifold. J. Geom. Anal. 28 (2018), 921-949. | DOI | MR | JFM

[6] Chen, L., Mao, J., Xiang, N., Xu,, C.: Inverse mean curvature flow inside a cone in warped products. Available at , 12 pages. | arXiv

[7] Evans, L.-C.: Partial Differential Equations. Graduate Studies in Mathematics 19, American Mathematical Society, Providence (1998). | MR | JFM

[8] Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differential Geom. 32 (1990), 299-314. | DOI | MR | JFM

[9] He, C.-L., Kong, D.-X., Liu, K.-F.: Hyperbolic mean curvature flow. J. Differ. Equations 246 (2009), 373-390. | DOI | MR | JFM

[10] Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Mathématiques & Applications 26, Springer, Berlin (1997). | MR | JFM

[11] Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20 (1984), 237-266. | DOI | MR | JFM

[12] Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59 (2001), 353-437. | DOI | MR | JFM

[13] Kong, D.-X., Liu, K.-F., Wang, Z.-G.: Hyperbolic mean curvature flow: evolution of plane curves. Acta Math. Sci., Ser B 29 (2009), 493-514. | DOI | MR | JFM

[14] Mao, J.: Forced hyperbolic mean curvature flow. Kodai Math. J. 35 (2012), 500-522. | DOI | MR | JFM

[15] Marquardt, T.: Inverse mean curvature flow for star-shaped hypersurfaces evolving in a cone. J. Geom. Anal. 23 (2013), 1303-1313. | DOI | MR | JFM

[16] Pipoli, G.: Inverse mean curvature flow in quaternionic hyperbolic space. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), 153-171. | DOI | MR | JFM

[17] Pipoli, G.: Inverse mean curvature flow in complex hyperbolic space. Available at , 31 pages. | arXiv | MR

[18] Protter, M.-H., Weinberger, H.-F.: Maximum Principles in Differential Equations. Springer, New York (1984). | MR | JFM

[19] Scheuer, J.: The inverse mean curvature flow in warped cylinders of non-positive radial curvature. Adv. Math. 306 (2017), 1130-1163. | DOI | MR | JFM

[20] Schneider, R.: Convex Bodies: The Brum-Minkowski Theory. Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge (1993). | DOI | MR | JFM

[21] Topping, P.: Mean curvature flow and geometric inequalities. J. Reine Angew. Math. 503 (1998), 47-61. | DOI | MR | JFM

[22] Yau, S.-T.: Review of geometry and analysis. Asian J. Math. 4 (2000), 235-278. | DOI | MR | JFM

[23] Zhou, H.-Y.: Inverse mean curvature flows in warped product manifolds. J. Geom. Anal. 28 (2018), 1749-1772. | DOI | MR | JFM

[24] Zhu, X.-P.: Lectures on Mean Curvature Flows. AMS/IP Studies in Advanced Mathematics 32, American Mathematical Society, Providence (2002). | DOI | MR | JFM

Cité par Sources :