The fan graph is determined by its signless Laplacian spectrum
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 21-31.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Given a graph $G$, if there is no nonisomorphic graph $H$ such that $G$ and $H$ have the same signless Laplacian spectra, then we say that $G$ is \hbox {$Q$-DS}. In this paper we show that every fan graph $F_n$ is \hbox {$Q$-DS}, where $F_{n}=K_{1}\vee P_{n-1}$ and $n\geq 3$.
DOI : 10.21136/CMJ.2019.0159-18
Classification : 05C50, 15A18
Keywords: signless Laplacian spectrum; join graph; graph determined by its spectrum
@article{10_21136_CMJ_2019_0159_18,
     author = {Liu, Muhuo and Yuan, Yuan and Chandra Das, Kinkar},
     title = {The fan graph is determined by its signless {Laplacian} spectrum},
     journal = {Czechoslovak Mathematical Journal},
     pages = {21--31},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2020},
     doi = {10.21136/CMJ.2019.0159-18},
     mrnumber = {4078345},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0159-18/}
}
TY  - JOUR
AU  - Liu, Muhuo
AU  - Yuan, Yuan
AU  - Chandra Das, Kinkar
TI  - The fan graph is determined by its signless Laplacian spectrum
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 21
EP  - 31
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0159-18/
DO  - 10.21136/CMJ.2019.0159-18
LA  - en
ID  - 10_21136_CMJ_2019_0159_18
ER  - 
%0 Journal Article
%A Liu, Muhuo
%A Yuan, Yuan
%A Chandra Das, Kinkar
%T The fan graph is determined by its signless Laplacian spectrum
%J Czechoslovak Mathematical Journal
%D 2020
%P 21-31
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0159-18/
%R 10.21136/CMJ.2019.0159-18
%G en
%F 10_21136_CMJ_2019_0159_18
Liu, Muhuo; Yuan, Yuan; Chandra Das, Kinkar. The fan graph is determined by its signless Laplacian spectrum. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 21-31. doi : 10.21136/CMJ.2019.0159-18. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0159-18/

Cité par Sources :