Keywords: signless Laplacian spectrum; join graph; graph determined by its spectrum
@article{10_21136_CMJ_2019_0159_18,
author = {Liu, Muhuo and Yuan, Yuan and Chandra Das, Kinkar},
title = {The fan graph is determined by its signless {Laplacian} spectrum},
journal = {Czechoslovak Mathematical Journal},
pages = {21--31},
year = {2020},
volume = {70},
number = {1},
doi = {10.21136/CMJ.2019.0159-18},
mrnumber = {4078345},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0159-18/}
}
TY - JOUR AU - Liu, Muhuo AU - Yuan, Yuan AU - Chandra Das, Kinkar TI - The fan graph is determined by its signless Laplacian spectrum JO - Czechoslovak Mathematical Journal PY - 2020 SP - 21 EP - 31 VL - 70 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0159-18/ DO - 10.21136/CMJ.2019.0159-18 LA - en ID - 10_21136_CMJ_2019_0159_18 ER -
%0 Journal Article %A Liu, Muhuo %A Yuan, Yuan %A Chandra Das, Kinkar %T The fan graph is determined by its signless Laplacian spectrum %J Czechoslovak Mathematical Journal %D 2020 %P 21-31 %V 70 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0159-18/ %R 10.21136/CMJ.2019.0159-18 %G en %F 10_21136_CMJ_2019_0159_18
Liu, Muhuo; Yuan, Yuan; Chandra Das, Kinkar. The fan graph is determined by its signless Laplacian spectrum. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 21-31. doi: 10.21136/CMJ.2019.0159-18
[1] Cvetković, D. M., Doob, M., Gutman, I., Torgašev, A.: Recent Results in the Theory of Graph Spectra. Annals of Discrete Mathematics 36, North-Holland, Amsterdam (1988). | DOI | MR | JFM
[2] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacians of finite graphs. Linear Algebra Appl. 423 (2007), 155-171. | DOI | MR | JFM
[3] Das, K. Ch.: The Laplacian spectrum of a graph. Comput. Math. Appl. 48 (2004), 715-724. | DOI | MR | JFM
[4] Das, K. Ch.: On conjectures involving second largest signless Laplacian eigenvalue of graphs. Linear Algebra Appl. 432 (2010), 3018-3029. | DOI | MR | JFM
[5] Das, K. Ch., Liu, M.: Complete split graph determined by its (signless) Laplacian spectrum. Discrete Appl. Math. 205 (2016), 45-51. | DOI | MR | JFM
[6] Freitas, M. A. A. de, Abreu, N. M. M. de, Del-Vecchio, R. R., Jurkiewicz, S.: Infinite families of $Q$-integral graphs. Linear Algebra Appl. 432 (2010), 2352-2360. | DOI | MR | JFM
[7] Haemers, W. H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226-228 (1995), 593-616. | DOI | MR | JFM
[8] Liu, M.: Some graphs determined by their (signless) Laplacian spectra. Czech. Math. J. 62 (2012), 1117-1134. | DOI | MR | JFM
[9] Liu, M., Liu, B.: Extremal Theory of Graph Spectrum. Mathematical Chemistry Monographs 22, University of Kragujevac and Faculty of Science Kragujevac, Kragujevac (2018).
[10] Liu, X., Zhang, Y., Gui, X.: The multi-fan graphs are determined by their Laplacian spectra. Discrete Math. 308 (2008), 4267-4271. | DOI | MR | JFM
[11] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?. Linear Algebra Appl. 373 (2003), 241-272. | DOI | MR | JFM
[12] Wang, J., Zhao, H., Huang, Q.: Spectral characterization of multicone graphs. Czech. Math. J. 62 (2012), 117-126. | DOI | MR | JFM
Cité par Sources :