Blow-up for the compressible isentropic Navier-Stokes-Poisson equations
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 9-19
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We will show the blow-up of smooth solutions to the Cauchy problems for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing and compressible bipolar isentropic Navier-Stokes-Poisson equations in arbitrary dimensions under some restrictions on the initial data. The key of the proof is finding the relations between the physical quantities and establishing some differential inequalities.
We will show the blow-up of smooth solutions to the Cauchy problems for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing and compressible bipolar isentropic Navier-Stokes-Poisson equations in arbitrary dimensions under some restrictions on the initial data. The key of the proof is finding the relations between the physical quantities and establishing some differential inequalities.
DOI : 10.21136/CMJ.2019.0156-18
Classification : 35B44, 35Q35
Keywords: compressible isentropic Navier-Stokes-Poisson equations; unipolar; bipolar; smooth solution; blow-up
@article{10_21136_CMJ_2019_0156_18,
     author = {Dong, Jianwei and Zhu, Junhui and Wang, Yanping},
     title = {Blow-up for the compressible isentropic {Navier-Stokes-Poisson} equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {9--19},
     year = {2020},
     volume = {70},
     number = {1},
     doi = {10.21136/CMJ.2019.0156-18},
     mrnumber = {4078344},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0156-18/}
}
TY  - JOUR
AU  - Dong, Jianwei
AU  - Zhu, Junhui
AU  - Wang, Yanping
TI  - Blow-up for the compressible isentropic Navier-Stokes-Poisson equations
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 9
EP  - 19
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0156-18/
DO  - 10.21136/CMJ.2019.0156-18
LA  - en
ID  - 10_21136_CMJ_2019_0156_18
ER  - 
%0 Journal Article
%A Dong, Jianwei
%A Zhu, Junhui
%A Wang, Yanping
%T Blow-up for the compressible isentropic Navier-Stokes-Poisson equations
%J Czechoslovak Mathematical Journal
%D 2020
%P 9-19
%V 70
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0156-18/
%R 10.21136/CMJ.2019.0156-18
%G en
%F 10_21136_CMJ_2019_0156_18
Dong, Jianwei; Zhu, Junhui; Wang, Yanping. Blow-up for the compressible isentropic Navier-Stokes-Poisson equations. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 9-19. doi: 10.21136/CMJ.2019.0156-18

[1] Cai, H., Tan, Z.: Existence and stability of stationary solutions to the compressible Navier-Stokes-Poisson equations. Nonlinear Anal., Real World Appl. 32 (2016), 260-293. | DOI | MR | JFM

[2] Cai, H., Tan, Z.: Asymptotic stability of stationary solutions to the compressible bipolar Navier-Stokes-Poisson equations. Math. Methods Appl. Sci. 40 (2017), 4493-4513. | DOI | MR | JFM

[3] Cho, Y., Jin, B.: Blow up of viscous heat-conducting compressible flows. J. Math. Anal. Appl. 320 (2006), 819-826. | DOI | MR | JFM

[4] Du, D. P., Li, J. Y., Zhang, K. J.: Blow-up of smooth solutions to the Navier-Stokes equations for compressible isothermal fluids. Commun. Math. Sci. 11 (2013), 541-546. | DOI | MR | JFM

[5] Hsiao, L., Li, H. L.: Compressible Navier-Stokes-Poisson equations. Acta Math. Sci., Ser. B 30 (2010), 1937-1948. | DOI | MR | JFM

[6] Hsiao, L., Li, H. L., Yang, T., Zou, C.: Compressible non-isentropic bipolar Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Acta Math. Sci., Ser. B 31 (2011), 2169-2194. | DOI | MR | JFM

[7] Jiang, F., Tan, Z.: Blow-up of viscous compressible reactive self-gravitating gas. Acta Math. Appl. Sin., Engl. Ser. 28 (2012), 401-408. | DOI | MR | JFM

[8] Jiu, Q. S., Wang, Y. X., Xin, Z. P.: Remarks on blow-up of smooth solutions to the compressible fluid with constant and degenerate viscosities. J. Differ. Equations 259 (2015), 2981-3003. | DOI | MR | JFM

[9] Lai, N. A.: Blow up of classical solutions to the isentropic compressible Navier-Stokes equations. Nonlinear Anal., Real World Appl. 25 (2015), 112-117. | DOI | MR | JFM

[10] Rozanova, O.: Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations. J. Differ. Equations 245 (2008), 1762-1774. | DOI | MR | JFM

[11] Tan, Z., Wang, Y. J.: Blow-up of smooth solutions to the Navier-Stokes equations of compressible viscous heat-conducting fluids. J. Aust. Math. Soc. 88 (2010), 239-246. | DOI | MR | JFM

[12] Tang, T., Zhang, Z. J.: Blow-up of smooth solution to the compressible Navier-Stokes-Poisson equations. Bull. Malays. Math. Sci. Soc. 39 (2016), 1487-1497. | DOI | MR | JFM

[13] Wang, G. W., Guo, B. L.: Blow-up of the smooth solutions to the compressible Navier-Stokes equations. Math. Methods Appl. Sci. 40 (2017), 5262-5272. | DOI | MR | JFM

[14] Wang, Y. Z., Wang, K. Y.: Asymptotic behavior of classical solutions to the compressible Navier-Stokes-Poisson equations in three and higher dimensions. J. Differ. Equations 259 (2015), 25-47. | DOI | MR | JFM

[15] Xie, H. Z.: Blow-up of smooth solutions to the Navier-Stokes-Poisson equations. Math. Methods Appl. Sci. 34 (2011), 242-248. | DOI | MR | JFM

[16] Xin, Z. P.: Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Commun. Pure Appl. Math. 51 (1998), 229-240. | DOI | MR | JFM

[17] Xin, Z. P., Yan, W.: On blowup of classical solutions to the compressible Navier-Stokes equations. Commun. Math. Phys. 321 (2013), 529-541. | DOI | MR | JFM

[18] Zhao, Z. Y., Li, Y. P.: Global existence and optimal decay rate of the compressible bipolar Navier-Stokes-Poisson equations with external force. Nonlinear Anal., Real World Appl. 16 (2014), 146-162. | DOI | MR | JFM

[19] Zou, C.: Asymptotical behavior of bipolar non-isentropic compressible Navier-Stokes-Poisson system. Acta Math. Appl. Sin., Engl. Ser. 32 (2016), 813-832. | DOI | MR | JFM

Cité par Sources :