Matlis dual of local cohomology modules
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 1-7 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(R,\mathfrak m)$ be a commutative Noetherian local ring, $\mathfrak a$ be an ideal of $R$ and $M$ a finitely generated $R$-module such that $\mathfrak a M\neq M$ and ${\rm cd}(\mathfrak a,M) - {\rm grade}(\mathfrak a,M)\leq 1$, where ${\rm cd}(\mathfrak a,M)$ is the cohomological dimension of $M$ with respect to $\mathfrak a$ and ${\rm grade}(\mathfrak a,M)$ is the $M$-grade of $\mathfrak a$. Let $D(-) := {\rm Hom}_R(-,E)$ be the Matlis dual functor, where $E := E(R/\mathfrak m)$ is the injective hull of the residue field $R/\mathfrak m$. We show that there exists the following long exact sequence \begin {eqnarray*} 0 \longrightarrow H^{n-2}_{\mathfrak a}(D(H^{n-1}_{\mathfrak a}(M))) \longrightarrow H^{n}_{\mathfrak a}(D(H^{n}_{\mathfrak a}(M))) \longrightarrow D(M) \\ \longrightarrow H^{n-1}_{\mathfrak a}(D(H^{n-1}_{\mathfrak a}(M))) \longrightarrow H^{n+1}_{\mathfrak a}(D(H^{n}_{\mathfrak a}(M))) \\ \longrightarrow H^{n}_{\mathfrak a}(D(H^{n-1}_{(x_1, \ldots ,x_{n-1})}(M))) \longrightarrow H^{n}_{\mathfrak a}(D(H^{n-1}_\mathfrak (M))) \longrightarrow \ldots , \end {eqnarray*} where $n:={\rm cd}(\mathfrak a,M)$ is a non-negative integer, $x_1, \ldots ,x_{n-1}$ is a regular sequence in $\mathfrak a$ on $M$ and, for an $R$-module $L$, $H^i_{\mathfrak a}(L)$ is the $i$th local cohomology module of $L$ with respect to $\mathfrak a$.
Let $(R,\mathfrak m)$ be a commutative Noetherian local ring, $\mathfrak a$ be an ideal of $R$ and $M$ a finitely generated $R$-module such that $\mathfrak a M\neq M$ and ${\rm cd}(\mathfrak a,M) - {\rm grade}(\mathfrak a,M)\leq 1$, where ${\rm cd}(\mathfrak a,M)$ is the cohomological dimension of $M$ with respect to $\mathfrak a$ and ${\rm grade}(\mathfrak a,M)$ is the $M$-grade of $\mathfrak a$. Let $D(-) := {\rm Hom}_R(-,E)$ be the Matlis dual functor, where $E := E(R/\mathfrak m)$ is the injective hull of the residue field $R/\mathfrak m$. We show that there exists the following long exact sequence \begin {eqnarray*} 0 \longrightarrow H^{n-2}_{\mathfrak a}(D(H^{n-1}_{\mathfrak a}(M))) \longrightarrow H^{n}_{\mathfrak a}(D(H^{n}_{\mathfrak a}(M))) \longrightarrow D(M) \\ \longrightarrow H^{n-1}_{\mathfrak a}(D(H^{n-1}_{\mathfrak a}(M))) \longrightarrow H^{n+1}_{\mathfrak a}(D(H^{n}_{\mathfrak a}(M))) \\ \longrightarrow H^{n}_{\mathfrak a}(D(H^{n-1}_{(x_1, \ldots ,x_{n-1})}(M))) \longrightarrow H^{n}_{\mathfrak a}(D(H^{n-1}_\mathfrak (M))) \longrightarrow \ldots , \end {eqnarray*} where $n:={\rm cd}(\mathfrak a,M)$ is a non-negative integer, $x_1, \ldots ,x_{n-1}$ is a regular sequence in $\mathfrak a$ on $M$ and, for an $R$-module $L$, $H^i_{\mathfrak a}(L)$ is the $i$th local cohomology module of $L$ with respect to $\mathfrak a$.
DOI : 10.21136/CMJ.2019.0134-18
Classification : 13D07, 13D45
Keywords: local cohomology module; Matlis dual functor, filter regular sequence
@article{10_21136_CMJ_2019_0134_18,
     author = {Naal, Batoul and Khashyarmanesh, Kazem},
     title = {Matlis dual of local cohomology modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--7},
     year = {2020},
     volume = {70},
     number = {1},
     doi = {10.21136/CMJ.2019.0134-18},
     mrnumber = {4078343},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0134-18/}
}
TY  - JOUR
AU  - Naal, Batoul
AU  - Khashyarmanesh, Kazem
TI  - Matlis dual of local cohomology modules
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1
EP  - 7
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0134-18/
DO  - 10.21136/CMJ.2019.0134-18
LA  - en
ID  - 10_21136_CMJ_2019_0134_18
ER  - 
%0 Journal Article
%A Naal, Batoul
%A Khashyarmanesh, Kazem
%T Matlis dual of local cohomology modules
%J Czechoslovak Mathematical Journal
%D 2020
%P 1-7
%V 70
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0134-18/
%R 10.21136/CMJ.2019.0134-18
%G en
%F 10_21136_CMJ_2019_0134_18
Naal, Batoul; Khashyarmanesh, Kazem. Matlis dual of local cohomology modules. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 1-7. doi: 10.21136/CMJ.2019.0134-18

[1] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 136, Cambridge University Press, Cambridge (2013). | DOI | MR | JFM

[2] Hellus, M.: On the associated primes of Matlis duals of top local cohomology modules. Commun. Algebra 33 (2005), 3997-4009. | DOI | MR | JFM

[3] Hellus, M.: Local Cohomology and Matlis Duality. Habilitationsschrift, Leipzing Available at https://www.uni-regensburg.de/mathematik/mathematik-hellus/ medien/habilitationsschriftohnedeckblatt.pdf (2006).

[4] Hellus, M.: Finiteness properties of duals of local cohomology modules. Commun. Algebra 35 (2007), 3590-3602. | DOI | MR | JFM

[5] Hellus, M., Schenzel, P.: Notes on local cohomology and duality. J. Algebra 401 (2014), 48-61. | DOI | MR | JFM

[6] Khashyarmanesh, K.: On the finiteness properties of extension and torsion functors of local cohomology modules. Proc. Am. Math. Soc. 135 (2007), 1319-1327. | DOI | MR | JFM

[7] Khashyarmanesh, K.: On the Matlis duals of local cohomology modules. Arch. Math. 88 (2007), 413-418. | DOI | MR | JFM

[8] Khashyarmanesh, K., Salarian, S.: Filter regular sequences and the finiteness of local cohomology modules. Commun. Algebra 26 (1998), 2483-2490. | DOI | MR | JFM

[9] Khashyarmanesh, K., Salarian, S.: On the associated primes of local cohomology modules. Commun. Algebra 27 (1999), 6191-6198. | DOI | MR | JFM

[10] Schenzel, P.: Matlis duals of local cohomology modules and their endomorphism rings. Arch. Math. 95 (2010), 115-123. | DOI | MR | JFM

[11] Schenzel, P., Trung, N. V., Cuong, N. T.: Verallgemeinerte Cohen-Macaulay-Moduln. Math. Nachr. 85 (1978), 57-73 German. | DOI | MR | JFM

[12] Stückrad, J., Vogel, W.: Buchsbaum Rings and Applications. An Interaction Between Algebra, Geometry and Topology. Springer, Berlin (1986). | MR | JFM

Cité par Sources :