Matlis dual of local cohomology modules
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 1-7.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(R,\mathfrak m)$ be a commutative Noetherian local ring, $\mathfrak a$ be an ideal of $R$ and $M$ a finitely generated $R$-module such that $\mathfrak a M\neq M$ and ${\rm cd}(\mathfrak a,M) - {\rm grade}(\mathfrak a,M)\leq 1$, where ${\rm cd}(\mathfrak a,M)$ is the cohomological dimension of $M$ with respect to $\mathfrak a$ and ${\rm grade}(\mathfrak a,M)$ is the $M$-grade of $\mathfrak a$. Let $D(-) := {\rm Hom}_R(-,E)$ be the Matlis dual functor, where $E := E(R/\mathfrak m)$ is the injective hull of the residue field $R/\mathfrak m$. We show that there exists the following long exact sequence \begin {eqnarray*} 0 \longrightarrow H^{n-2}_{\mathfrak a}(D(H^{n-1}_{\mathfrak a}(M))) \longrightarrow H^{n}_{\mathfrak a}(D(H^{n}_{\mathfrak a}(M))) \longrightarrow D(M) \\ \longrightarrow H^{n-1}_{\mathfrak a}(D(H^{n-1}_{\mathfrak a}(M))) \longrightarrow H^{n+1}_{\mathfrak a}(D(H^{n}_{\mathfrak a}(M))) \\ \longrightarrow H^{n}_{\mathfrak a}(D(H^{n-1}_{(x_1, \ldots ,x_{n-1})}(M))) \longrightarrow H^{n}_{\mathfrak a}(D(H^{n-1}_\mathfrak (M))) \longrightarrow \ldots , \end {eqnarray*} where $n:={\rm cd}(\mathfrak a,M)$ is a non-negative integer, $x_1, \ldots ,x_{n-1}$ is a regular sequence in $\mathfrak a$ on $M$ and, for an $R$-module $L$, $H^i_{\mathfrak a}(L)$ is the $i$th local cohomology module of $L$ with respect to $\mathfrak a$.
DOI : 10.21136/CMJ.2019.0134-18
Classification : 13D07, 13D45
Keywords: local cohomology module; Matlis dual functor, filter regular sequence
@article{10_21136_CMJ_2019_0134_18,
     author = {Naal, Batoul and Khashyarmanesh, Kazem},
     title = {Matlis dual of local cohomology modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2020},
     doi = {10.21136/CMJ.2019.0134-18},
     mrnumber = {4078343},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0134-18/}
}
TY  - JOUR
AU  - Naal, Batoul
AU  - Khashyarmanesh, Kazem
TI  - Matlis dual of local cohomology modules
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1
EP  - 7
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0134-18/
DO  - 10.21136/CMJ.2019.0134-18
LA  - en
ID  - 10_21136_CMJ_2019_0134_18
ER  - 
%0 Journal Article
%A Naal, Batoul
%A Khashyarmanesh, Kazem
%T Matlis dual of local cohomology modules
%J Czechoslovak Mathematical Journal
%D 2020
%P 1-7
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0134-18/
%R 10.21136/CMJ.2019.0134-18
%G en
%F 10_21136_CMJ_2019_0134_18
Naal, Batoul; Khashyarmanesh, Kazem. Matlis dual of local cohomology modules. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 1, pp. 1-7. doi : 10.21136/CMJ.2019.0134-18. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0134-18/

Cité par Sources :