On a sequence formed by iterating a divisor operator
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1177-1196
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\mathbb {N}$ be the set of positive integers and let $s\in \mathbb {N}$. We denote by $d^{s}$ the arithmetic function given by $ d^{s}( n) =( d( n) ) ^{s}$, where $d(n)$ is the number of positive divisors of $n$. Moreover, for every $\ell ,m\in \mathbb {N}$ we denote by $\delta ^{s,\ell ,m}( n) $ the sequence $$ \underbrace {d^{s}( d^{s}( \ldots d^{s}( d^{s}( n) +\ell ) +\ell \ldots ) +\ell ) }_{m\text {-times}} =\begin {cases} d^{s}( n) \text {for} \ m=1,\\ d^{s}( d^{s}( n) +\ell ) \text {for} \ m=2,\\ d^{s}(d^{s}( d^{s}(n) +\ell ) +\ell ) \text {for} \ m=3, \\ \vdots \end {cases} $$ We present classical and nonclassical notes on the sequence $ ( \delta ^{s,\ell ,m}( n)) _{m\geq 1}$, where $\ell $, $n$, $s$ are understood as parameters.
Let $\mathbb {N}$ be the set of positive integers and let $s\in \mathbb {N}$. We denote by $d^{s}$ the arithmetic function given by $ d^{s}( n) =( d( n) ) ^{s}$, where $d(n)$ is the number of positive divisors of $n$. Moreover, for every $\ell ,m\in \mathbb {N}$ we denote by $\delta ^{s,\ell ,m}( n) $ the sequence $$ \underbrace {d^{s}( d^{s}( \ldots d^{s}( d^{s}( n) +\ell ) +\ell \ldots ) +\ell ) }_{m\text {-times}} =\begin {cases} d^{s}( n) \text {for} \ m=1,\\ d^{s}( d^{s}( n) +\ell ) \text {for} \ m=2,\\ d^{s}(d^{s}( d^{s}(n) +\ell ) +\ell ) \text {for} \ m=3, \\ \vdots \end {cases} $$ We present classical and nonclassical notes on the sequence $ ( \delta ^{s,\ell ,m}( n)) _{m\geq 1}$, where $\ell $, $n$, $s$ are understood as parameters.
DOI :
10.21136/CMJ.2019.0133-18
Classification :
03H05, 11A25, 11A41
Keywords: divisor function; prime number; iterated sequence; internal set theory
Keywords: divisor function; prime number; iterated sequence; internal set theory
@article{10_21136_CMJ_2019_0133_18,
author = {Djamel, Bellaouar and Abdelmadjid, Boudaoud and \"Ozer, \"Ozen},
title = {On a sequence formed by iterating a divisor operator},
journal = {Czechoslovak Mathematical Journal},
pages = {1177--1196},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0133-18},
mrnumber = {4039629},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0133-18/}
}
TY - JOUR AU - Djamel, Bellaouar AU - Abdelmadjid, Boudaoud AU - Özer, Özen TI - On a sequence formed by iterating a divisor operator JO - Czechoslovak Mathematical Journal PY - 2019 SP - 1177 EP - 1196 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0133-18/ DO - 10.21136/CMJ.2019.0133-18 LA - en ID - 10_21136_CMJ_2019_0133_18 ER -
%0 Journal Article %A Djamel, Bellaouar %A Abdelmadjid, Boudaoud %A Özer, Özen %T On a sequence formed by iterating a divisor operator %J Czechoslovak Mathematical Journal %D 2019 %P 1177-1196 %V 69 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0133-18/ %R 10.21136/CMJ.2019.0133-18 %G en %F 10_21136_CMJ_2019_0133_18
Djamel, Bellaouar; Abdelmadjid, Boudaoud; Özer, Özen. On a sequence formed by iterating a divisor operator. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1177-1196. doi: 10.21136/CMJ.2019.0133-18
Cité par Sources :