Keywords: divisor function; prime number; iterated sequence; internal set theory
@article{10_21136_CMJ_2019_0133_18,
author = {Djamel, Bellaouar and Abdelmadjid, Boudaoud and \"Ozer, \"Ozen},
title = {On a sequence formed by iterating a divisor operator},
journal = {Czechoslovak Mathematical Journal},
pages = {1177--1196},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0133-18},
mrnumber = {4039629},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0133-18/}
}
TY - JOUR AU - Djamel, Bellaouar AU - Abdelmadjid, Boudaoud AU - Özer, Özen TI - On a sequence formed by iterating a divisor operator JO - Czechoslovak Mathematical Journal PY - 2019 SP - 1177 EP - 1196 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0133-18/ DO - 10.21136/CMJ.2019.0133-18 LA - en ID - 10_21136_CMJ_2019_0133_18 ER -
%0 Journal Article %A Djamel, Bellaouar %A Abdelmadjid, Boudaoud %A Özer, Özen %T On a sequence formed by iterating a divisor operator %J Czechoslovak Mathematical Journal %D 2019 %P 1177-1196 %V 69 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0133-18/ %R 10.21136/CMJ.2019.0133-18 %G en %F 10_21136_CMJ_2019_0133_18
Djamel, Bellaouar; Abdelmadjid, Boudaoud; Özer, Özen. On a sequence formed by iterating a divisor operator. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1177-1196. doi: 10.21136/CMJ.2019.0133-18
[1] Bellaouar, D.: Notes on certain arithmetic inequalities involving two consecutive primes. Malays. J. Math. Sci. 10 (2016), 253-268. | MR
[2] Bellaouar, D., Boudaoud, A.: Non-classical study on the simultaneous rational approximation. Malays. J. Math. Sci. 9 (2015), 209-225. | MR
[3] Boudaoud, A.: La conjecture de Dickson et classes particulière d'entiers. Ann. Math. Blaise Pascal 13 (2006), 103-109 French. | DOI | MR | JFM
[4] Boudaoud, A.: Decomposition of terms in Lucas sequences. J. Log. Anal. 1 (2009), Article 4, 23 pages. | DOI | MR | JFM
[5] Koninck, J.-M. De, Mercier, A.: 1001 problems in classical number theory. Ellipses, Paris (2004), French. | MR | JFM
[6] Diener, F., (eds.), M. Diener: Nonstandard Analysis in Practice. Universitext, Springer, Berlin (1995). | DOI | MR | JFM
[7] Diener, F., Reeb, G.: Analyse Non Standard. Enseignement des Sciences 40, Hermann, Paris (1989), French. | MR | JFM
[8] Erdős, P., Kátai, I.: On the growth of $ d_{k}( n) $. Fibonacci Q. 7 (1969), 267-274. | MR | JFM
[9] Jin, R.: Inverse problem for upper asymptotic density. Trans. Am. Math. Soc. 355 (2003), 57-78. | DOI | MR | JFM
[10] Kanovei, V., Reeken, M.: Nonstandard Analysis, Axiomatically. Springer Monographs in Mathematics, Springer, Berlin (2004). | DOI | MR | JFM
[11] Nathanson, M. B.: Elementary Methods in Number Theory. Graduate Texts in Mathematics 195, Springer, New York (2000). | DOI | MR | JFM
[12] Nelson, E.: Internal set theory: A new approach to nonstandard analysis. Bull. Am. Math. Soc. 83 (1977), 1165-1198. | DOI | MR | JFM
[13] Ramanujan, S.: Highly composite numbers. Lond. M. S. Proc. (2) 14 (1915), 347-409 \99999JFM99999 45.1248.01. | DOI | MR
[14] Robinson, A.: Non-standard Analysis. Princeton Landmarks in Mathematics, Princeton University Press, Princeton (1974). | MR | JFM
[15] Berg, I. P. Van den: Extended use of IST. Ann. Pure Appl. Logic 58 (1992), 73-92. | DOI | MR | JFM
[16] Berg, I. P. Van den, (eds.), V. Neves: The Strength of Nonstandard Analysis. Springer, Wien (2007). | DOI | MR | JFM
[17] Wells, D.: Prime Numbers: The Most Mysterious Figures in Math. Wiley, Hoboken (2005).
[18] Yan, S. Y.: Number Theory for Computing. Springer, Berlin (2002). | DOI | MR | JFM
Cité par Sources :