Keywords: metric dimension; resolving set; Cayley graph; direct product; cyclic group
@article{10_21136_CMJ_2019_0127_17,
author = {Mengesha, Demelash Ashagrie and Vetr{\'\i}k, Tom\'a\v{s}},
title = {Resolving sets of directed {Cayley} graphs for the direct product of cyclic groups},
journal = {Czechoslovak Mathematical Journal},
pages = {621--636},
year = {2019},
volume = {69},
number = {3},
doi = {10.21136/CMJ.2019.0127-17},
mrnumber = {3989270},
zbl = {07088808},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0127-17/}
}
TY - JOUR AU - Mengesha, Demelash Ashagrie AU - Vetrík, Tomáš TI - Resolving sets of directed Cayley graphs for the direct product of cyclic groups JO - Czechoslovak Mathematical Journal PY - 2019 SP - 621 EP - 636 VL - 69 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0127-17/ DO - 10.21136/CMJ.2019.0127-17 LA - en ID - 10_21136_CMJ_2019_0127_17 ER -
%0 Journal Article %A Mengesha, Demelash Ashagrie %A Vetrík, Tomáš %T Resolving sets of directed Cayley graphs for the direct product of cyclic groups %J Czechoslovak Mathematical Journal %D 2019 %P 621-636 %V 69 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0127-17/ %R 10.21136/CMJ.2019.0127-17 %G en %F 10_21136_CMJ_2019_0127_17
Mengesha, Demelash Ashagrie; Vetrík, Tomáš. Resolving sets of directed Cayley graphs for the direct product of cyclic groups. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 621-636. doi: 10.21136/CMJ.2019.0127-17
[1] Ahmad, A., Imran, M., Al-Mushayt, O., Bokhary, S. A. U. H.: On the metric dimension of barycentric subdivision of Cayley graphs Cay$(Z_n\oplus Z_m)$. Miskolc Math. Notes 16 (2016), 637-646. | DOI | MR | JFM
[2] Chartrand, G., Eroh, L., Johnson, M. A., Oellermann, O. R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105 (2000), 99-113. | DOI | MR | JFM
[3] Fehr, M., Gosselin, S., Oellermann, O. R.: The metric dimension of Cayley digraphs. Discrete Math. 306 (2006), 31-41. | DOI | MR | JFM
[4] Harary, F., Melter, R. A.: On the metric dimension of a graph. Ars Comb. 2 (1976), 191-195. | MR | JFM
[5] Imran, M.: On the metric dimension of barycentric subdivision of Cayley graphs. Acta Math. Appl. Sin. Engl. Ser. 32 (2016), 1067-1072. | DOI | MR | JFM
[6] Imran, M., Baig, A. Q., Bokhary, S. A. U. H., Javaid, I.: On the metric dimension of circulant graphs. Appl. Math. Lett. 25 (2012), 320-325. | DOI | MR | JFM
[7] Javaid, I., Rahim, M. T., Ali, K.: Families of regular graphs with constant metric dimension. Util. Math. 75 (2008), 21-33. | MR | JFM
[8] Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70 (1996), 217-229. | DOI | MR | JFM
[9] Melter, R. A., Tomescu, I.: Metric bases in digital geometry. Comput. Vision Graphics Image Process 25 (1984), 113-121. | DOI | MR | JFM
[10] Oellermann, O. R., Pawluck, C. D., Stokke, A.: The metric dimension of Cayley digraphs of Abelian groups. Ars Comb. 81 (2006), 97-111. | MR | JFM
[11] Slater, P. J.: Leaves of trees. Proc. 6th Southeast. Conf. Combinatorics, Graph Theory and Computing Congressus Numerantium 14, Utilitas Mathematica, Winnipeg (1975), 549-559. | MR | JFM
Cité par Sources :