Resolving sets of directed Cayley graphs for the direct product of cyclic groups
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 621-636 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A directed Cayley graph $C(\Gamma ,X)$ is specified by a group $\Gamma $ and an identity-free generating set $X$ for this group. Vertices of $C(\Gamma ,X)$ are elements of $\Gamma $ and there is a directed edge from the vertex $u$ to the vertex $v$ in $C(\Gamma ,X)$ if and only if there is a generator $x \in X$ such that $ux = v$. We study graphs $C(\Gamma ,X)$ for the direct product $Z_m \times Z_n$ of two cyclic groups $Z_m$ and $Z_n$, and the generating set $X = \{ (0,1), (1, 0), (2,0), \dots , (p,0) \}$. We present resolving sets which yield upper bounds on the metric dimension of these graphs for $p = 2$ and $3$.
A directed Cayley graph $C(\Gamma ,X)$ is specified by a group $\Gamma $ and an identity-free generating set $X$ for this group. Vertices of $C(\Gamma ,X)$ are elements of $\Gamma $ and there is a directed edge from the vertex $u$ to the vertex $v$ in $C(\Gamma ,X)$ if and only if there is a generator $x \in X$ such that $ux = v$. We study graphs $C(\Gamma ,X)$ for the direct product $Z_m \times Z_n$ of two cyclic groups $Z_m$ and $Z_n$, and the generating set $X = \{ (0,1), (1, 0), (2,0), \dots , (p,0) \}$. We present resolving sets which yield upper bounds on the metric dimension of these graphs for $p = 2$ and $3$.
DOI : 10.21136/CMJ.2019.0127-17
Classification : 05C12, 05C25
Keywords: metric dimension; resolving set; Cayley graph; direct product; cyclic group
@article{10_21136_CMJ_2019_0127_17,
     author = {Mengesha, Demelash Ashagrie and Vetr{\'\i}k, Tom\'a\v{s}},
     title = {Resolving sets of directed {Cayley} graphs for the direct product of cyclic groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {621--636},
     year = {2019},
     volume = {69},
     number = {3},
     doi = {10.21136/CMJ.2019.0127-17},
     mrnumber = {3989270},
     zbl = {07088808},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0127-17/}
}
TY  - JOUR
AU  - Mengesha, Demelash Ashagrie
AU  - Vetrík, Tomáš
TI  - Resolving sets of directed Cayley graphs for the direct product of cyclic groups
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 621
EP  - 636
VL  - 69
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0127-17/
DO  - 10.21136/CMJ.2019.0127-17
LA  - en
ID  - 10_21136_CMJ_2019_0127_17
ER  - 
%0 Journal Article
%A Mengesha, Demelash Ashagrie
%A Vetrík, Tomáš
%T Resolving sets of directed Cayley graphs for the direct product of cyclic groups
%J Czechoslovak Mathematical Journal
%D 2019
%P 621-636
%V 69
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0127-17/
%R 10.21136/CMJ.2019.0127-17
%G en
%F 10_21136_CMJ_2019_0127_17
Mengesha, Demelash Ashagrie; Vetrík, Tomáš. Resolving sets of directed Cayley graphs for the direct product of cyclic groups. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 621-636. doi: 10.21136/CMJ.2019.0127-17

[1] Ahmad, A., Imran, M., Al-Mushayt, O., Bokhary, S. A. U. H.: On the metric dimension of barycentric subdivision of Cayley graphs Cay$(Z_n\oplus Z_m)$. Miskolc Math. Notes 16 (2016), 637-646. | DOI | MR | JFM

[2] Chartrand, G., Eroh, L., Johnson, M. A., Oellermann, O. R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105 (2000), 99-113. | DOI | MR | JFM

[3] Fehr, M., Gosselin, S., Oellermann, O. R.: The metric dimension of Cayley digraphs. Discrete Math. 306 (2006), 31-41. | DOI | MR | JFM

[4] Harary, F., Melter, R. A.: On the metric dimension of a graph. Ars Comb. 2 (1976), 191-195. | MR | JFM

[5] Imran, M.: On the metric dimension of barycentric subdivision of Cayley graphs. Acta Math. Appl. Sin. Engl. Ser. 32 (2016), 1067-1072. | DOI | MR | JFM

[6] Imran, M., Baig, A. Q., Bokhary, S. A. U. H., Javaid, I.: On the metric dimension of circulant graphs. Appl. Math. Lett. 25 (2012), 320-325. | DOI | MR | JFM

[7] Javaid, I., Rahim, M. T., Ali, K.: Families of regular graphs with constant metric dimension. Util. Math. 75 (2008), 21-33. | MR | JFM

[8] Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70 (1996), 217-229. | DOI | MR | JFM

[9] Melter, R. A., Tomescu, I.: Metric bases in digital geometry. Comput. Vision Graphics Image Process 25 (1984), 113-121. | DOI | MR | JFM

[10] Oellermann, O. R., Pawluck, C. D., Stokke, A.: The metric dimension of Cayley digraphs of Abelian groups. Ars Comb. 81 (2006), 97-111. | MR | JFM

[11] Slater, P. J.: Leaves of trees. Proc. 6th Southeast. Conf. Combinatorics, Graph Theory and Computing Congressus Numerantium 14, Utilitas Mathematica, Winnipeg (1975), 549-559. | MR | JFM

Cité par Sources :