The Wells map for abelian extensions of 3-Lie algebras
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1133-1164 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Wells map relates automorphisms with cohomology in the setting of extensions of groups and Lie algebras. We construct the Wells map for some abelian extensions $0\rightarrow A\hookrightarrow L\stackrel {\pi }{\rightarrow } B\rightarrow 0$ of 3-Lie algebras to obtain obstruction classes in $H^1(B,A)$ for a pair of automorphisms in ${\rm Aut}(A)\times {\rm Aut}(B)$ to be inducible from an automorphism of $L$. Application to free nilpotent 3-Lie algebras is discussed.
The Wells map relates automorphisms with cohomology in the setting of extensions of groups and Lie algebras. We construct the Wells map for some abelian extensions $0\rightarrow A\hookrightarrow L\stackrel {\pi }{\rightarrow } B\rightarrow 0$ of 3-Lie algebras to obtain obstruction classes in $H^1(B,A)$ for a pair of automorphisms in ${\rm Aut}(A)\times {\rm Aut}(B)$ to be inducible from an automorphism of $L$. Application to free nilpotent 3-Lie algebras is discussed.
DOI : 10.21136/CMJ.2019.0098-18
Classification : 16E40, 17A36, 17A42
Keywords: automorphisms of 3-Lie algebras; representations of 3-Lie algebras; abelian extensions; cohomology; free nilpotent 3-Lie algebras
@article{10_21136_CMJ_2019_0098_18,
     author = {Tan, Youjun and Xu, Senrong},
     title = {The {Wells} map for abelian extensions of {3-Lie} algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1133--1164},
     year = {2019},
     volume = {69},
     number = {4},
     doi = {10.21136/CMJ.2019.0098-18},
     mrnumber = {4039627},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0098-18/}
}
TY  - JOUR
AU  - Tan, Youjun
AU  - Xu, Senrong
TI  - The Wells map for abelian extensions of 3-Lie algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 1133
EP  - 1164
VL  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0098-18/
DO  - 10.21136/CMJ.2019.0098-18
LA  - en
ID  - 10_21136_CMJ_2019_0098_18
ER  - 
%0 Journal Article
%A Tan, Youjun
%A Xu, Senrong
%T The Wells map for abelian extensions of 3-Lie algebras
%J Czechoslovak Mathematical Journal
%D 2019
%P 1133-1164
%V 69
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0098-18/
%R 10.21136/CMJ.2019.0098-18
%G en
%F 10_21136_CMJ_2019_0098_18
Tan, Youjun; Xu, Senrong. The Wells map for abelian extensions of 3-Lie algebras. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1133-1164. doi: 10.21136/CMJ.2019.0098-18

[1] Baer, R.: Erweiterung von Gruppen und ihren Isomorphismen. Math. Z. 38 German (1934), 375-416. | DOI | MR | JFM

[2] Bardakov, V. G., Singh, M.: Extensions and automorphisms of Lie algebras. J. Algebra Appl. 16 (2017), Article ID 1750162, 15 pages. | DOI | MR | JFM

[3] Daletskii, Y. L., Takhtajan, L. A.: Leibniz and Lie algebra structures for Nambu algebra. Lett. Math. Phys. 39 (1997), 127-141. | DOI | MR | JFM

[4] Filippov, V. T.: $n$-Lie algebras. Sib. Math. J. 26 (1985), 879-891 translation from Sibirsk. Mat. Zh. 26 1985 126-140. | DOI | MR | JFM

[5] Hilton, P. J., Stammbach, U.: A Course in Homological Algebra. Graduate Texts in Mathematics 4, Springer, New York (1997). | DOI | MR | JFM

[6] Jin, P.: Automorphisms of groups. J. Algebra 312 (2007), 562-569. | DOI | MR | JFM

[7] Jin, P., Liu, H.: The Wells exact sequence for the automorphism group of a group extension. J. Algebra 324 (2010), 1219-1228. | DOI | MR | JFM

[8] Kasymov, Sh. M.: Theory of $n$-Lie algebras. Algebra Logic 26 (1987), 155-166 translation from Algebra Logika 26 1987 277-297. | DOI | MR | JFM

[9] Passi, I. B. S., Singh, M., Yadav, M. K.: Automorphisms of abelian group extensions. J. Algebra 324 (2010), 820-830. | DOI | MR | JFM

[10] Robinson, D. J. S.: Automorphisms of group extensions. Note Mat. 33 (2013), 121-129. | DOI | MR | JFM

[11] Takhtajan, L.: On foundation of the generalized Nambu mechanics. Commun. Math. Phys. 160 (1994), 295-315. | DOI | MR | JFM

[12] Takhtajan, L. A.: Higher order analog of Chevalley-Eilenberg complex and deformation theory of $n$-gebras. St. Petersbg. Math. J. 6 (1995), 429-438 translation from Algebra Anal. 6 1994 262-272. | MR | JFM

[13] Wells, C.: Automorphisms of group extensions. Trans. Am. Math. Soc. 155 (1971), 189-194. | DOI | MR | JFM

[14] Xu, S.: Cohomology, derivations and abelian extensions of 3-Lie algebras. J. Algebra Appl. 18 (2019), Article ID 1950130, 26 pages. | DOI | MR

Cité par Sources :