On row-sum majorization
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1111-1121
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\mathbb {M}_{n,m}$ be the set of all $n\times m$ real or complex matrices. For $A,B\in \mathbb {M}_{n,m}$, we say that $A$ is row-sum majorized by $B$ (written as $A\prec ^{\rm rs} B$) if $R(A)\prec R(B)$, where $R(A)$ is the row sum vector of $A$ and $\prec $ is the classical majorization on $\mathbb {R}^n$. In the present paper, the structure of all linear operators $T\colon \mathbb {M}_{n,m}\rightarrow \mathbb {M}_{n,m}$ preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on $\mathbb {R}^n$ and then find the linear preservers of row-sum majorization of these relations on $\mathbb {M}_{n,m}$.
Let $\mathbb {M}_{n,m}$ be the set of all $n\times m$ real or complex matrices. For $A,B\in \mathbb {M}_{n,m}$, we say that $A$ is row-sum majorized by $B$ (written as $A\prec ^{\rm rs} B$) if $R(A)\prec R(B)$, where $R(A)$ is the row sum vector of $A$ and $\prec $ is the classical majorization on $\mathbb {R}^n$. In the present paper, the structure of all linear operators $T\colon \mathbb {M}_{n,m}\rightarrow \mathbb {M}_{n,m}$ preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on $\mathbb {R}^n$ and then find the linear preservers of row-sum majorization of these relations on $\mathbb {M}_{n,m}$.
DOI :
10.21136/CMJ.2019.0084-18
Classification :
15A04, 15A21
Keywords: majorization; linear preserver; doubly stochastic matrix
Keywords: majorization; linear preserver; doubly stochastic matrix
@article{10_21136_CMJ_2019_0084_18,
author = {Akbarzadeh, Farzaneh and Armandnejad, Ali},
title = {On row-sum majorization},
journal = {Czechoslovak Mathematical Journal},
pages = {1111--1121},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0084-18},
mrnumber = {4039625},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0084-18/}
}
TY - JOUR AU - Akbarzadeh, Farzaneh AU - Armandnejad, Ali TI - On row-sum majorization JO - Czechoslovak Mathematical Journal PY - 2019 SP - 1111 EP - 1121 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0084-18/ DO - 10.21136/CMJ.2019.0084-18 LA - en ID - 10_21136_CMJ_2019_0084_18 ER -
Akbarzadeh, Farzaneh; Armandnejad, Ali. On row-sum majorization. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1111-1121. doi: 10.21136/CMJ.2019.0084-18
Cité par Sources :