Keywords: majorization; linear preserver; doubly stochastic matrix
@article{10_21136_CMJ_2019_0084_18,
author = {Akbarzadeh, Farzaneh and Armandnejad, Ali},
title = {On row-sum majorization},
journal = {Czechoslovak Mathematical Journal},
pages = {1111--1121},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0084-18},
mrnumber = {4039625},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0084-18/}
}
TY - JOUR AU - Akbarzadeh, Farzaneh AU - Armandnejad, Ali TI - On row-sum majorization JO - Czechoslovak Mathematical Journal PY - 2019 SP - 1111 EP - 1121 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0084-18/ DO - 10.21136/CMJ.2019.0084-18 LA - en ID - 10_21136_CMJ_2019_0084_18 ER -
Akbarzadeh, Farzaneh; Armandnejad, Ali. On row-sum majorization. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1111-1121. doi: 10.21136/CMJ.2019.0084-18
[1] Ando, T.: Majorization, doubly stochastic matrices, and comparison of eigenvalues. Linear Algebra Appl. 118 (1989), 163-248. | DOI | MR | JFM
[2] Armandnejad, A., Heydari, H.: Linear preserving $gd$-majorization functions from $M_{n,m}$ to $M_{n,k}$. Bull. Iran. Math. Soc. 37 (2011), 215-224. | MR | JFM
[3] Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics 169, Springer, New York (1997). | DOI | MR | JFM
[4] Hasani, A. M., Radjabalipour, M.: The structure of linear operators strongly preserving majorizations of matrices. Electron. J. Linear Algebra 15 (2006), 260-268. | DOI | MR | JFM
[5] Motlaghian, S. M., Armandnejad, A., Hall, F. J.: Linear preservers of Hadamard majorization. Electron. J. Linear Algebra 31 (2016), 593-609. | DOI | MR | JFM
[6] Soleymani, M., Armandnejad, A.: Linear preservers of circulant majorization on $\mathbb{R}^n$. Linear Algebra Appl. 440 (2014), 286-292. | DOI | MR | JFM
[7] Soleymani, M., Armandnejad, A.: Linear preservers of even majorization on $M_{n,m}$. Linear Multilinear Algebra 62 (2014), 1437-1449. | DOI | MR | JFM
Cité par Sources :