Associated primes of local cohomology modules of generalized Laskerian modules
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1101-1109 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal I$ be a set of ideals of a commutative Noetherian ring $R$. We use the notion of $\mathcal I$-closure operation which is a semiprime closure operation on submodules of modules to introduce the class of $\mathcal I$-Laskerian modules. This enables us to investigate the set of associated prime ideals of certain $\mathcal I$-closed submodules of local cohomology modules.
Let $\mathcal I$ be a set of ideals of a commutative Noetherian ring $R$. We use the notion of $\mathcal I$-closure operation which is a semiprime closure operation on submodules of modules to introduce the class of $\mathcal I$-Laskerian modules. This enables us to investigate the set of associated prime ideals of certain $\mathcal I$-closed submodules of local cohomology modules.
DOI : 10.21136/CMJ.2019.0077-18
Classification : 13A15, 13D45, 13E99
Keywords: associated prime ideals; Grothendieck spectral sequence; local cohomology module; semiprime closure operation
@article{10_21136_CMJ_2019_0077_18,
     author = {Hassanzadeh-Lelekaami, Dawood and Roshan-Shekalgourabi, Hajar},
     title = {Associated primes of local cohomology modules of generalized {Laskerian} modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1101--1109},
     year = {2019},
     volume = {69},
     number = {4},
     doi = {10.21136/CMJ.2019.0077-18},
     mrnumber = {4039624},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0077-18/}
}
TY  - JOUR
AU  - Hassanzadeh-Lelekaami, Dawood
AU  - Roshan-Shekalgourabi, Hajar
TI  - Associated primes of local cohomology modules of generalized Laskerian modules
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 1101
EP  - 1109
VL  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0077-18/
DO  - 10.21136/CMJ.2019.0077-18
LA  - en
ID  - 10_21136_CMJ_2019_0077_18
ER  - 
%0 Journal Article
%A Hassanzadeh-Lelekaami, Dawood
%A Roshan-Shekalgourabi, Hajar
%T Associated primes of local cohomology modules of generalized Laskerian modules
%J Czechoslovak Mathematical Journal
%D 2019
%P 1101-1109
%V 69
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0077-18/
%R 10.21136/CMJ.2019.0077-18
%G en
%F 10_21136_CMJ_2019_0077_18
Hassanzadeh-Lelekaami, Dawood; Roshan-Shekalgourabi, Hajar. Associated primes of local cohomology modules of generalized Laskerian modules. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1101-1109. doi: 10.21136/CMJ.2019.0077-18

[1] Brodmann, M. P., Lashgari, F. A.: A finiteness result for associated primes of local cohomology modules. Proc. Am. Math. Soc. 128 (2000), 2851-2853. | DOI | MR | JFM

[2] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[3] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules. Proc. Am. Math. Soc. 133 (2005), 655-660. | DOI | MR | JFM

[4] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules of weakly Laskerian modules. Commun. Algebra 34 (2006), 681-690. | DOI | MR | JFM

[5] Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9 (1970), 145-164. | DOI | MR | JFM

[6] Hassanzadeh-Lelekaami, D.: A closure operation on submodules. J. Algebra Appl. 16 (2017), Article ID 1750229, 22 pages. | DOI | MR | JFM

[7] Huneke, C.: Problems on local cohomology. Free Resolutions in Commutative Algebra and Algebraic Geometry Research Notes in Mathematics 2, Jones and Bartlett Publishers, Boston (1992), 93-108. | MR | JFM

[8] Katzman, M.: An example of an infinite set of associated primes of a local cohomology module. J. Algebra 252 (2002), 161-166. | DOI | MR | JFM

[9] Khashyarmanesh, K., Salarian, Sh.: On the associated primes of local cohomology modules. Commun. Algebra 27 (1999), 6191-6198. | DOI | MR | JFM

[10] Kirby, D.: Components of ideals in a commutative ring. Ann. Mat. Pura Appl. (4) 71 (1966), 109-125. | DOI | MR | JFM

[11] Rotman, J. J.: An Introduction to Homological Algebra. Universitext, Springer, New York (2009). | DOI | MR | JFM

[12] Singh, A. K.: $p$-torsion elements in local cohomology modules. Math. Res. Lett. 7 (2000), 165-176. | DOI | MR | JFM

[13] Zöschinger, H.: Minimax-Moduln. J. Algebra 102 (1986), 1-32 German. | DOI | MR | JFM

Cité par Sources :