Keywords: degree sequence; bigraphic pair; potentially ${\rm SB}_{s+s', t+t'}$-bigraphic pair
@article{10_21136_CMJ_2019_0076_17,
author = {Yin, Jian-Hua and Li, Jia-Yun and Du, Jin-Zhi and Li, Hai-Yan},
title = {Bigraphic pairs with a realization containing a split bipartite-graph},
journal = {Czechoslovak Mathematical Journal},
pages = {609--619},
year = {2019},
volume = {69},
number = {3},
doi = {10.21136/CMJ.2019.0076-17},
mrnumber = {3989269},
zbl = {07088807},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0076-17/}
}
TY - JOUR AU - Yin, Jian-Hua AU - Li, Jia-Yun AU - Du, Jin-Zhi AU - Li, Hai-Yan TI - Bigraphic pairs with a realization containing a split bipartite-graph JO - Czechoslovak Mathematical Journal PY - 2019 SP - 609 EP - 619 VL - 69 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0076-17/ DO - 10.21136/CMJ.2019.0076-17 LA - en ID - 10_21136_CMJ_2019_0076_17 ER -
%0 Journal Article %A Yin, Jian-Hua %A Li, Jia-Yun %A Du, Jin-Zhi %A Li, Hai-Yan %T Bigraphic pairs with a realization containing a split bipartite-graph %J Czechoslovak Mathematical Journal %D 2019 %P 609-619 %V 69 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0076-17/ %R 10.21136/CMJ.2019.0076-17 %G en %F 10_21136_CMJ_2019_0076_17
Yin, Jian-Hua; Li, Jia-Yun; Du, Jin-Zhi; Li, Hai-Yan. Bigraphic pairs with a realization containing a split bipartite-graph. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 609-619. doi: 10.21136/CMJ.2019.0076-17
[1] Erdős, P., Gallai, T.: Graphs with prescribed degrees of vertices. Mat. Lapok 11 Hungarian (1961), 264-274. | JFM
[2] Ferrara, M., Jacobson, M., Schmitt, J., Siggers, M.: Potentially {$H$}-bigraphic sequences. Discuss. Math., Graph Theory 29 (2009), 583-596. | DOI | MR | JFM
[3] Gale, D.: A theorem on flows in networks. Pac. J. Math. 7 (1957), 1073-1082. | DOI | MR | JFM
[4] Garg, A., Goel, A., Tripathi, A.: Constructive extensions of two results on graphic sequences. Discrete Appl. Math. 159 (2011), 2170-2174. | DOI | MR | JFM
[5] Kézdy, A., Lehel, J.: Degree sequences of graphs with prescribed clique size. Combinatorics, Graph Theory, and Algorithms, Vol. I, II New Issues Press, Kalamazoo Y. Alavi et al. (1999), 535-544. | MR | JFM
[6] Nash-Williams, C. St. J. A.: Valency sequences which force graphs to have hamiltonian circuits. Interim Report University of Waterloo, Waterloo (1970).
[7] Rao, A. R.: An Erdős-Gallai type result on the clique number of a realization of a degree sequence. Unpublished.
[8] Ryser, H. J.: Combinatorial properties of matrices of zeros and ones. Canad. J. Math. 9 (1957), 371-377. | DOI | MR | JFM
[9] Tripathi, A., Venugopalan, S., West, D. B.: A short constructive proof of the Erdős-Gallai characterization of graphic lists. Discrete Math. 310 (2010), 843-844. | DOI | MR | JFM
[10] Yin, J.-H.: A Rao-type characterization for a sequence to have a realization containing a split graph. Discrete Math. 311 (2011), 2485-2489. | DOI | MR | JFM
[11] Yin, J.-H.: A short constructive proof of A.R. Rao's characterization of potentially {$K_{r+1}$}-graphic sequences. Discrete Appl. Math. 160 (2012), 352-354. | DOI | MR | JFM
[12] Yin, J.-H.: A note on potentially {$K_{s,t}$}-bigraphic pairs. Util. Math. 100 (2016), 407-410. | DOI | MR | JFM
[13] Yin, J.-H., Huang, X.-F.: A Gale-Ryser type characterization of potentially {$K_{s,t}$}-bigraphic pairs. Discrete Math. 312 (2012), 1241-1243. | DOI | MR | JFM
Cité par Sources :