On $n$-exact categories
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1089-1099.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An $n$-exact category is a pair consisting of an additive category and a class of sequences with $n+2$ terms satisfying certain axioms. We introduce $n$-weakly idempotent complete categories. Then we prove that an additive $n$-weakly idempotent complete category together with the class $\mathcal {C}_n$ of all contractible sequences with $n+2$ terms is an $n$-exact category. Some properties of the class $\mathcal {C}_n$ are also discussed.
DOI : 10.21136/CMJ.2019.0067-18
Classification : 18E10, 18E99
Keywords: $n$-exact category; contractible sequence; idempotent complete category
@article{10_21136_CMJ_2019_0067_18,
     author = {Manjra, Said},
     title = {On $n$-exact categories},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1089--1099},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2019},
     doi = {10.21136/CMJ.2019.0067-18},
     mrnumber = {4039623},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0067-18/}
}
TY  - JOUR
AU  - Manjra, Said
TI  - On $n$-exact categories
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 1089
EP  - 1099
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0067-18/
DO  - 10.21136/CMJ.2019.0067-18
LA  - en
ID  - 10_21136_CMJ_2019_0067_18
ER  - 
%0 Journal Article
%A Manjra, Said
%T On $n$-exact categories
%J Czechoslovak Mathematical Journal
%D 2019
%P 1089-1099
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0067-18/
%R 10.21136/CMJ.2019.0067-18
%G en
%F 10_21136_CMJ_2019_0067_18
Manjra, Said. On $n$-exact categories. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1089-1099. doi : 10.21136/CMJ.2019.0067-18. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0067-18/

Cité par Sources :