Keywords: $n$-exact category; contractible sequence; idempotent complete category
@article{10_21136_CMJ_2019_0067_18,
author = {Manjra, Said},
title = {On $n$-exact categories},
journal = {Czechoslovak Mathematical Journal},
pages = {1089--1099},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0067-18},
mrnumber = {4039623},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0067-18/}
}
Manjra, Said. On $n$-exact categories. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1089-1099. doi: 10.21136/CMJ.2019.0067-18
[1] Borceux, F.: Handbook of Categorical Algebra. Volume 2: Categories and Structures. Encyclopedia of Mathematics and Its Applications, 50, Cambridge University Press, Cambridge (2008). | DOI | MR | JFM
[2] Bühler, T.: Exact categories. Expo. Math. 28 (2010), 1-69. | DOI | MR | JFM
[3] Freyd, P.: Splitting homotopy idempotents. Proc. Conf. Categor. Algebra, La Jolla 1965 S. Eilenberg et al. Springer, Berlin (1966), 173-176. | DOI | MR | JFM
[4] Geiss, C., Keller, B., Oppermann, S.: $n$-angulated categories. J. Reine Angew. Math. 675 (2013), 101-120. | DOI | MR | JFM
[5] Iyama, O.: Auslander correspondence. Adv. Math. 210 (2007), 51-82. | DOI | MR | JFM
[6] Iyama, O.: Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories. Adv. Math. 210 (2007), 22-50. | DOI | MR | JFM
[7] Iyama, O.: Cluster tilting for higher Auslander algebras. Adv. Math. 226 (2011), 1-61. | DOI | MR | JFM
[8] Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent. Math. 172 (2008), 117-168. | DOI | MR | JFM
[9] Jasso, G.: $n$-Abelian and $n$-exact categories. Math. Z. 283 (2016), 703-759. | DOI | MR | JFM
[10] Lin, Z.: Right $n$-angulated categories arising from covariantly finite subcategories. Commun. Algebra 45 (2017), 828-840. | DOI | MR | JFM
[11] Neeman, A.: The derived category of an exact category. J. Algebra 135 (1990), 388-394. | DOI | MR | JFM
[12] Quillen, D.: Higher algebraic $K$-theory. I. Algebraic $K$-Theory I: Higher $K$-theories H. Bass Lecture Notes in Mathematics 341, Springer, Berlin (1973), 85-147. | DOI | MR | JFM
[13] Thomason, R. W., Trobaugh, T.: Higher algebraic $K$-theory of schemes and of derived categories. The Grothendieck Festschrift, Vol. III P. Cartier et al. Progress in Mathematics 88, Birkhäuser, Boston (1990), 247-435. | DOI | MR | JFM
Cité par Sources :