On $n$-exact categories
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1089-1099
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An $n$-exact category is a pair consisting of an additive category and a class of sequences with $n+2$ terms satisfying certain axioms. We introduce $n$-weakly idempotent complete categories. Then we prove that an additive $n$-weakly idempotent complete category together with the class $\mathcal {C}_n$ of all contractible sequences with $n+2$ terms is an $n$-exact category. Some properties of the class $\mathcal {C}_n$ are also discussed.
An $n$-exact category is a pair consisting of an additive category and a class of sequences with $n+2$ terms satisfying certain axioms. We introduce $n$-weakly idempotent complete categories. Then we prove that an additive $n$-weakly idempotent complete category together with the class $\mathcal {C}_n$ of all contractible sequences with $n+2$ terms is an $n$-exact category. Some properties of the class $\mathcal {C}_n$ are also discussed.
DOI : 10.21136/CMJ.2019.0067-18
Classification : 18E10, 18E99
Keywords: $n$-exact category; contractible sequence; idempotent complete category
@article{10_21136_CMJ_2019_0067_18,
     author = {Manjra, Said},
     title = {On $n$-exact categories},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1089--1099},
     year = {2019},
     volume = {69},
     number = {4},
     doi = {10.21136/CMJ.2019.0067-18},
     mrnumber = {4039623},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0067-18/}
}
TY  - JOUR
AU  - Manjra, Said
TI  - On $n$-exact categories
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 1089
EP  - 1099
VL  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0067-18/
DO  - 10.21136/CMJ.2019.0067-18
LA  - en
ID  - 10_21136_CMJ_2019_0067_18
ER  - 
%0 Journal Article
%A Manjra, Said
%T On $n$-exact categories
%J Czechoslovak Mathematical Journal
%D 2019
%P 1089-1099
%V 69
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0067-18/
%R 10.21136/CMJ.2019.0067-18
%G en
%F 10_21136_CMJ_2019_0067_18
Manjra, Said. On $n$-exact categories. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1089-1099. doi: 10.21136/CMJ.2019.0067-18

[1] Borceux, F.: Handbook of Categorical Algebra. Volume 2: Categories and Structures. Encyclopedia of Mathematics and Its Applications, 50, Cambridge University Press, Cambridge (2008). | DOI | MR | JFM

[2] Bühler, T.: Exact categories. Expo. Math. 28 (2010), 1-69. | DOI | MR | JFM

[3] Freyd, P.: Splitting homotopy idempotents. Proc. Conf. Categor. Algebra, La Jolla 1965 S. Eilenberg et al. Springer, Berlin (1966), 173-176. | DOI | MR | JFM

[4] Geiss, C., Keller, B., Oppermann, S.: $n$-angulated categories. J. Reine Angew. Math. 675 (2013), 101-120. | DOI | MR | JFM

[5] Iyama, O.: Auslander correspondence. Adv. Math. 210 (2007), 51-82. | DOI | MR | JFM

[6] Iyama, O.: Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories. Adv. Math. 210 (2007), 22-50. | DOI | MR | JFM

[7] Iyama, O.: Cluster tilting for higher Auslander algebras. Adv. Math. 226 (2011), 1-61. | DOI | MR | JFM

[8] Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent. Math. 172 (2008), 117-168. | DOI | MR | JFM

[9] Jasso, G.: $n$-Abelian and $n$-exact categories. Math. Z. 283 (2016), 703-759. | DOI | MR | JFM

[10] Lin, Z.: Right $n$-angulated categories arising from covariantly finite subcategories. Commun. Algebra 45 (2017), 828-840. | DOI | MR | JFM

[11] Neeman, A.: The derived category of an exact category. J. Algebra 135 (1990), 388-394. | DOI | MR | JFM

[12] Quillen, D.: Higher algebraic $K$-theory. I. Algebraic $K$-Theory I: Higher $K$-theories H. Bass Lecture Notes in Mathematics 341, Springer, Berlin (1973), 85-147. | DOI | MR | JFM

[13] Thomason, R. W., Trobaugh, T.: Higher algebraic $K$-theory of schemes and of derived categories. The Grothendieck Festschrift, Vol. III P. Cartier et al. Progress in Mathematics 88, Birkhäuser, Boston (1990), 247-435. | DOI | MR | JFM

Cité par Sources :