Keywords: breaking point; poset of conjugacy classes of subgroups; interval; generalized quaternion $2$-group
@article{10_21136_CMJ_2019_0066_18,
author = {T\u{a}rn\u{a}uceanu, Marius},
title = {Breaking points in the poset of conjugacy classes of subgroups of a finite group},
journal = {Czechoslovak Mathematical Journal},
pages = {1081--1087},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0066-18},
mrnumber = {4039622},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0066-18/}
}
TY - JOUR AU - Tărnăuceanu, Marius TI - Breaking points in the poset of conjugacy classes of subgroups of a finite group JO - Czechoslovak Mathematical Journal PY - 2019 SP - 1081 EP - 1087 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0066-18/ DO - 10.21136/CMJ.2019.0066-18 LA - en ID - 10_21136_CMJ_2019_0066_18 ER -
%0 Journal Article %A Tărnăuceanu, Marius %T Breaking points in the poset of conjugacy classes of subgroups of a finite group %J Czechoslovak Mathematical Journal %D 2019 %P 1081-1087 %V 69 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0066-18/ %R 10.21136/CMJ.2019.0066-18 %G en %F 10_21136_CMJ_2019_0066_18
Tărnăuceanu, Marius. Breaking points in the poset of conjugacy classes of subgroups of a finite group. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1081-1087. doi: 10.21136/CMJ.2019.0066-18
[1] Breaz, S., Călugăreanu, G.: Abelian groups whose subgroup lattice is the union of two intervals. J. Aust. Math. Soc. 78 (2005), 27-36. | DOI | MR | JFM
[2] Călugăreanu, G., Deaconescu, M.: Breaking points in subgroup lattices. Proc. Conf. Groups St. Andrews 2001 in Oxford. Vol. I C. M. Campbell et al. London Mathematical Society Lecture Note Series 304, Cambridge University Press, Cambridge (2003), 59-62. | DOI | MR | JFM
[3] Chen, Y., Chen, G.: A note on a characterization of generalized quaternion 2-groups. C. R., Math., Acad. Sci. Paris 352 (2014), 459-461. | DOI | MR | JFM
[4] Isaacs, I. M.: Finite Group Theory. Graduate Studies in Mathematics 92, American Mathematical Society, Providence (2008). | DOI | MR | JFM
[5] Schmidt, R.: Subgroup Lattices of Groups. De Gruyter Expositions in Mathematics 14, Walter de Gruyter, Berlin (1994). | DOI | MR | JFM
[6] Suzuki, M.: On the lattice of subgroups of finite groups. Trans. Am. Math. Soc. 70 (1951), 345-371. | DOI | MR | JFM
[7] Suzuki, M.: Group Theory I. Grundlehren der Mathematischen Wissenschaften 247, Springer, Berlin (1982). | DOI | MR | JFM
[8] Suzuki, M.: Group Theory II. Grundlehren der Mathematischen Wissenschaften 248, Springer, Berlin (1986). | DOI | MR | JFM
[9] Tărnăuceanu, M.: A characterization of generalized quaternion 2-groups. C. R., Math., Acad. Sci. Paris 348 (2010), 731-733. | DOI | MR | JFM
[10] Tărnăuceanu, M.: Contributions to the Study of Subgroup Lattices. Matrix Rom, Bucharest (2016). | MR | JFM
Cité par Sources :