Breaking points in the poset of conjugacy classes of subgroups of a finite group
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1081-1087
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We determine the finite groups whose poset of conjugacy classes of subgroups has breaking points. This leads to a new characterization of the generalized quaternion $2$-groups. A generalization of this property is also studied.
We determine the finite groups whose poset of conjugacy classes of subgroups has breaking points. This leads to a new characterization of the generalized quaternion $2$-groups. A generalization of this property is also studied.
DOI : 10.21136/CMJ.2019.0066-18
Classification : 20D15, 20D30, 20E15
Keywords: breaking point; poset of conjugacy classes of subgroups; interval; generalized quaternion $2$-group
@article{10_21136_CMJ_2019_0066_18,
     author = {T\u{a}rn\u{a}uceanu, Marius},
     title = {Breaking points in the poset of conjugacy classes of subgroups of a finite group},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1081--1087},
     year = {2019},
     volume = {69},
     number = {4},
     doi = {10.21136/CMJ.2019.0066-18},
     mrnumber = {4039622},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0066-18/}
}
TY  - JOUR
AU  - Tărnăuceanu, Marius
TI  - Breaking points in the poset of conjugacy classes of subgroups of a finite group
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 1081
EP  - 1087
VL  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0066-18/
DO  - 10.21136/CMJ.2019.0066-18
LA  - en
ID  - 10_21136_CMJ_2019_0066_18
ER  - 
%0 Journal Article
%A Tărnăuceanu, Marius
%T Breaking points in the poset of conjugacy classes of subgroups of a finite group
%J Czechoslovak Mathematical Journal
%D 2019
%P 1081-1087
%V 69
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0066-18/
%R 10.21136/CMJ.2019.0066-18
%G en
%F 10_21136_CMJ_2019_0066_18
Tărnăuceanu, Marius. Breaking points in the poset of conjugacy classes of subgroups of a finite group. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1081-1087. doi: 10.21136/CMJ.2019.0066-18

[1] Breaz, S., Călugăreanu, G.: Abelian groups whose subgroup lattice is the union of two intervals. J. Aust. Math. Soc. 78 (2005), 27-36. | DOI | MR | JFM

[2] Călugăreanu, G., Deaconescu, M.: Breaking points in subgroup lattices. Proc. Conf. Groups St. Andrews 2001 in Oxford. Vol. I C. M. Campbell et al. London Mathematical Society Lecture Note Series 304, Cambridge University Press, Cambridge (2003), 59-62. | DOI | MR | JFM

[3] Chen, Y., Chen, G.: A note on a characterization of generalized quaternion 2-groups. C. R., Math., Acad. Sci. Paris 352 (2014), 459-461. | DOI | MR | JFM

[4] Isaacs, I. M.: Finite Group Theory. Graduate Studies in Mathematics 92, American Mathematical Society, Providence (2008). | DOI | MR | JFM

[5] Schmidt, R.: Subgroup Lattices of Groups. De Gruyter Expositions in Mathematics 14, Walter de Gruyter, Berlin (1994). | DOI | MR | JFM

[6] Suzuki, M.: On the lattice of subgroups of finite groups. Trans. Am. Math. Soc. 70 (1951), 345-371. | DOI | MR | JFM

[7] Suzuki, M.: Group Theory I. Grundlehren der Mathematischen Wissenschaften 247, Springer, Berlin (1982). | DOI | MR | JFM

[8] Suzuki, M.: Group Theory II. Grundlehren der Mathematischen Wissenschaften 248, Springer, Berlin (1986). | DOI | MR | JFM

[9] Tărnăuceanu, M.: A characterization of generalized quaternion 2-groups. C. R., Math., Acad. Sci. Paris 348 (2010), 731-733. | DOI | MR | JFM

[10] Tărnăuceanu, M.: Contributions to the Study of Subgroup Lattices. Matrix Rom, Bucharest (2016). | MR | JFM

Cité par Sources :