Admissible spaces for a first order differential equation with delayed argument
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1069-1080
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider the equation $$ -y'(x)+q(x)y(x-\varphi (x))=f(x), \quad x \in \mathbb R, $$ where $\varphi $ and $q$ ($q \geq 1$) are positive continuous functions for all $ x\in \mathbb R $ and $f \in C(\mathbb R)$. By a solution of the equation we mean any function $y$, continuously differentiable everywhere in $\mathbb R$, which satisfies the equation for all $x \in \mathbb R$. We show that under certain additional conditions on the functions $\varphi $ and $q$, the above equation has a unique solution $y$, satisfying the inequality $$ \|y'\|_{C(\mathbb R)}+\|qy\|_{C(\mathbb R)}\leq c\|f\|_{C(\mathbb R)}, $$ where the constant $c\in (0,\infty )$ does not depend on the choice of $f$.
DOI :
10.21136/CMJ.2019.0062-18
Classification :
34A30, 34B05, 34B40
Keywords: linear differential equation; admissible pair; delayed argument
Keywords: linear differential equation; admissible pair; delayed argument
@article{10_21136_CMJ_2019_0062_18,
author = {Chernyavskaya, Nina A. and Dorel, Lela S. and Shuster, Leonid A.},
title = {Admissible spaces for a first order differential equation with delayed argument},
journal = {Czechoslovak Mathematical Journal},
pages = {1069--1080},
publisher = {mathdoc},
volume = {69},
number = {4},
year = {2019},
doi = {10.21136/CMJ.2019.0062-18},
mrnumber = {4039621},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0062-18/}
}
TY - JOUR AU - Chernyavskaya, Nina A. AU - Dorel, Lela S. AU - Shuster, Leonid A. TI - Admissible spaces for a first order differential equation with delayed argument JO - Czechoslovak Mathematical Journal PY - 2019 SP - 1069 EP - 1080 VL - 69 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0062-18/ DO - 10.21136/CMJ.2019.0062-18 LA - en ID - 10_21136_CMJ_2019_0062_18 ER -
%0 Journal Article %A Chernyavskaya, Nina A. %A Dorel, Lela S. %A Shuster, Leonid A. %T Admissible spaces for a first order differential equation with delayed argument %J Czechoslovak Mathematical Journal %D 2019 %P 1069-1080 %V 69 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0062-18/ %R 10.21136/CMJ.2019.0062-18 %G en %F 10_21136_CMJ_2019_0062_18
Chernyavskaya, Nina A.; Dorel, Lela S.; Shuster, Leonid A. Admissible spaces for a first order differential equation with delayed argument. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1069-1080. doi: 10.21136/CMJ.2019.0062-18
Cité par Sources :