On the generalized vanishing conjecture
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1061-1068
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that the GVC (generalized vanishing conjecture) holds for the differential operator $\Lambda =(\partial _x-\Phi (\partial _y))\partial _y$ and all polynomials $P(x,y)$, where $\Phi (t)$ is any polynomial over the base field. The GVC arose from the study of the Jacobian conjecture.
We show that the GVC (generalized vanishing conjecture) holds for the differential operator $\Lambda =(\partial _x-\Phi (\partial _y))\partial _y$ and all polynomials $P(x,y)$, where $\Phi (t)$ is any polynomial over the base field. The GVC arose from the study of the Jacobian conjecture.
DOI : 10.21136/CMJ.2019.0049-18
Classification : 13N15, 14R15
Keywords: Jacobian conjecture; generalized vanishing conjecture; differential operator
@article{10_21136_CMJ_2019_0049_18,
     author = {Feng, Zhenzhen and Sun, Xiaosong},
     title = {On the generalized vanishing conjecture},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1061--1068},
     year = {2019},
     volume = {69},
     number = {4},
     doi = {10.21136/CMJ.2019.0049-18},
     mrnumber = {4039620},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0049-18/}
}
TY  - JOUR
AU  - Feng, Zhenzhen
AU  - Sun, Xiaosong
TI  - On the generalized vanishing conjecture
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 1061
EP  - 1068
VL  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0049-18/
DO  - 10.21136/CMJ.2019.0049-18
LA  - en
ID  - 10_21136_CMJ_2019_0049_18
ER  - 
%0 Journal Article
%A Feng, Zhenzhen
%A Sun, Xiaosong
%T On the generalized vanishing conjecture
%J Czechoslovak Mathematical Journal
%D 2019
%P 1061-1068
%V 69
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0049-18/
%R 10.21136/CMJ.2019.0049-18
%G en
%F 10_21136_CMJ_2019_0049_18
Feng, Zhenzhen; Sun, Xiaosong. On the generalized vanishing conjecture. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1061-1068. doi: 10.21136/CMJ.2019.0049-18

[1] Adjamagbo, P. K., Essen, A. van den: A proof of the equivalence of the Dixmier, Jacobian and Poisson conjectures. Acta Math. Vietnam. 32 (2007), 205-214. | MR | JFM

[2] Bass, H., Connell, E. H., Wright, D.: The Jacobian conjecture: Reduction of degree and formal expansion of the inverse. Bull. Am. Math. Soc., New Ser. 7 (1982), 287-330. | DOI | MR | JFM

[3] Belov-Kanel, A., Kontsevich, M.: The Jacobian conjecture is stably equivalent to the Dixmier conjecture. Mosc. Math. J. 7 (2007), 209-218. | DOI | MR | JFM

[4] Bondt, M. de: A few remarks on the generalized vanishing conjecture. Arch. Math. 100 (2013), 533-538. | DOI | MR | JFM

[5] Bondt, M. de, Essen, A. van den: Nilpotent symmetric Jacobian matrices and the Jacobian conjecture. J. Pure Appl. Algebra 193 (2004), 61-70. | DOI | MR | JFM

[6] Bondt, M. de, Essen, A. van den: A reduction of the Jacobian conjecture to the symmetric case. Proc. Am. Math. Soc. 133 (2005), 2201-2205. | DOI | MR | JFM

[7] Bondt, M. de, Essen, A. van den: Nilpotent symmetric Jacobian matrices and the Jacobian conjecture. II. J. Pure Appl. Algebra 196 (2005), 135-148. | DOI | MR | JFM

[8] Liu, D., Sun, X.: Images of higher-order differential operators of polynomial algebras. Bull. Aust. Math. Soc. 96 (2017), 205-211. | DOI | MR | JFM

[9] Mathieu, O.: Some conjectures about invariant theory and their applications. Algèbre non commutative, groupes quantiques et invariants Alev, J. et al. Sémin. Congr. 2, Société Mathématique de France, Paris (1995), 263-279. | MR | JFM

[10] Meng, G.: Legendre transform, Hessian conjecture and tree formula. Appl. Math. Lett. 19 (2006), 503-510. | DOI | MR | JFM

[11] Sun, X.: Images of derivations of polynomial algebras with divergence zero. J. Algebra 492 (2017), 414-418. | DOI | MR | JFM

[12] Tsuchimoto, Y.: Endomorphisms of Weyl algebra and $p$-curvatures. Osaka J. Math. 42 (2005), 435-452. | MR | JFM

[13] Essen, A. van den: Polynomial Automorphisms and the Jacobian Conjecture. Progress in Mathematics 190, Birkhäuser, Basel (2000). | DOI | MR | JFM

[14] Essen, A. van den, Sun, X.: Monomial preserving derivations and Mathieu-Zhao subspaces. J. Pure Appl. Algebra 222 (2018), 3219-3223. | DOI | MR | JFM

[15] Essen, A. van den, Willems, R., Zhao, W.: Some results on the vanishing conjecture of differential operators with constant coefficients. J. Pure Appl. Algebra 219 (2015), 3847-3861. | DOI | MR | JFM

[16] Essen, A. van den, Wright, D., Zhao, W.: On the image conjecture. J. Algebra 340 (2011), 211-224. | DOI | MR | JFM

[17] Essen, A. van den, Zhao, W.: Two results on homogeneous Hessian nilpotent polynomials. J. Pure Appl. Algebra 212 (2008), 2190-2193. | DOI | MR | JFM

[18] Wright, D.: The Jacobian conjecture as a problem in combinatorics. Affine Algebraic Geometry Osaka University Press, Osaka (2007), 483-503. | MR | JFM

[19] Zhao, W.: A vanishing conjecture on differential operators with constant coefficients. Acta Math. Vietnam. 32 (2007), 259-286. | MR | JFM

[20] Zhao, W.: Hessian nilpotent polynomials and the Jacobian conjecture. Trans. Am. Math. Soc. 359 (2007), 249-274. | DOI | MR | JFM

[21] Zhao, W.: Images of commuting differential operators of order one with constant leading coefficients. J. Algebra 324 (2010), 231-247. | DOI | MR | JFM

Cité par Sources :