Keywords: division ring; rational identity; maximal subfield
@article{10_21136_CMJ_2019_0039_18,
author = {Aaghabali, Mehdi and Bien, Mai Hoang},
title = {Certain simple maximal subfields in division rings},
journal = {Czechoslovak Mathematical Journal},
pages = {1053--1060},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0039-18},
mrnumber = {4039619},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0039-18/}
}
TY - JOUR AU - Aaghabali, Mehdi AU - Bien, Mai Hoang TI - Certain simple maximal subfields in division rings JO - Czechoslovak Mathematical Journal PY - 2019 SP - 1053 EP - 1060 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0039-18/ DO - 10.21136/CMJ.2019.0039-18 LA - en ID - 10_21136_CMJ_2019_0039_18 ER -
%0 Journal Article %A Aaghabali, Mehdi %A Bien, Mai Hoang %T Certain simple maximal subfields in division rings %J Czechoslovak Mathematical Journal %D 2019 %P 1053-1060 %V 69 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0039-18/ %R 10.21136/CMJ.2019.0039-18 %G en %F 10_21136_CMJ_2019_0039_18
Aaghabali, Mehdi; Bien, Mai Hoang. Certain simple maximal subfields in division rings. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1053-1060. doi: 10.21136/CMJ.2019.0039-18
[1] Aaghabali, M., Akbari, S., Bien, M. H.: Division algebras with left algebraic commutators. Algebr. Represent. Theory 21 (2018), 807-816. | DOI | MR | JFM
[2] Albert, A. A., Muckenhoupt, B.: On matrices of trace zeros. Mich. Math. J. 4 (1957), 1-3. | DOI | MR | JFM
[3] Amitsur, S. A.: Rational identities and applications to algebra and geometry. J. Algebra 3 (1966), 304-359. | DOI | MR | JFM
[4] Amitsur, S. A., Rowen, L. H.: Elements of reduced trace 0. Isr. J. Math. 87 (1994), 161-179. | DOI | MR | JFM
[5] Beidar, K. I., Martindale, W. S., III, Mikhalev, A. V.: Rings with Generalized Identities. Pure and Applied Mathematics 196, Marcel Dekker, New York (1996). | MR | JFM
[6] Chebotar, M. A., Fong, Y., Lee, P.-H.: On division rings with algebraic commutators of bounded degree. Manuscr. Math. 113 (2004), 153-164. | DOI | MR | JFM
[7] Chiba, K.: Generalized rational identities of subnormal subgroups of skew fields. Proc. Am. Math. Soc. 124 (1996), 1649-1653. | DOI | MR | JFM
[8] Hai, B. X., Dung, T. H., Bien, M. H.: Almost subnormal subgroups in division rings with generalized algebraic rational identities. Available at | arXiv
[9] Lam, T. Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics 131, Springer, New York (2001). | DOI | MR | JFM
[10] Mahdavi-Hezavehi, M.: Extension of valuations on derived groups of division rings. Commun. Algebra 23 (1995), 913-926. | DOI | MR | JFM
[11] Mahdavi-Hezavehi, M.: Commutators in division rings revisited. Bull. Iran. Math. Soc. 26 (2000), 7-88. | MR | JFM
[12] Mahdavi-Hezavehi, M., Akbari-Feyzaabaadi, S., Mehraabaadi, M., Hajie-Abolhassan, H.: On derived groups of division rings. II. Commun. Algebra 23 (1995), 2881-2887. | DOI | MR | JFM
[13] Thompson, R. C.: Commutators in the special and general linear groups. Trans. Am. Math. Soc. 101 (1961), 16-33. | DOI | MR | JFM
Cité par Sources :