Certain simple maximal subfields in division rings
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1053-1060.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $D$ be a division ring finite dimensional over its center $F$. The goal of this paper is to prove that for any positive integer $n$ there exists $a\in D^{(n)},$ the $n$th multiplicative derived subgroup such that $F(a)$ is a maximal subfield of $D$. We also show that a single depth-$n$ iterated additive commutator would generate a maximal subfield of $D.$
DOI : 10.21136/CMJ.2019.0039-18
Classification : 16K20, 16R50, 17A35
Keywords: division ring; rational identity; maximal subfield
@article{10_21136_CMJ_2019_0039_18,
     author = {Aaghabali, Mehdi and Bien, Mai Hoang},
     title = {Certain simple maximal subfields in division rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1053--1060},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2019},
     doi = {10.21136/CMJ.2019.0039-18},
     mrnumber = {4039619},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0039-18/}
}
TY  - JOUR
AU  - Aaghabali, Mehdi
AU  - Bien, Mai Hoang
TI  - Certain simple maximal subfields in division rings
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 1053
EP  - 1060
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0039-18/
DO  - 10.21136/CMJ.2019.0039-18
LA  - en
ID  - 10_21136_CMJ_2019_0039_18
ER  - 
%0 Journal Article
%A Aaghabali, Mehdi
%A Bien, Mai Hoang
%T Certain simple maximal subfields in division rings
%J Czechoslovak Mathematical Journal
%D 2019
%P 1053-1060
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0039-18/
%R 10.21136/CMJ.2019.0039-18
%G en
%F 10_21136_CMJ_2019_0039_18
Aaghabali, Mehdi; Bien, Mai Hoang. Certain simple maximal subfields in division rings. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1053-1060. doi : 10.21136/CMJ.2019.0039-18. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0039-18/

Cité par Sources :