Certain simple maximal subfields in division rings
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1053-1060
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $D$ be a division ring finite dimensional over its center $F$. The goal of this paper is to prove that for any positive integer $n$ there exists $a\in D^{(n)},$ the $n$th multiplicative derived subgroup such that $F(a)$ is a maximal subfield of $D$. We also show that a single depth-$n$ iterated additive commutator would generate a maximal subfield of $D.$
Let $D$ be a division ring finite dimensional over its center $F$. The goal of this paper is to prove that for any positive integer $n$ there exists $a\in D^{(n)},$ the $n$th multiplicative derived subgroup such that $F(a)$ is a maximal subfield of $D$. We also show that a single depth-$n$ iterated additive commutator would generate a maximal subfield of $D.$
DOI : 10.21136/CMJ.2019.0039-18
Classification : 16K20, 16R50, 17A35
Keywords: division ring; rational identity; maximal subfield
@article{10_21136_CMJ_2019_0039_18,
     author = {Aaghabali, Mehdi and Bien, Mai Hoang},
     title = {Certain simple maximal subfields in division rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1053--1060},
     year = {2019},
     volume = {69},
     number = {4},
     doi = {10.21136/CMJ.2019.0039-18},
     mrnumber = {4039619},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0039-18/}
}
TY  - JOUR
AU  - Aaghabali, Mehdi
AU  - Bien, Mai Hoang
TI  - Certain simple maximal subfields in division rings
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 1053
EP  - 1060
VL  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0039-18/
DO  - 10.21136/CMJ.2019.0039-18
LA  - en
ID  - 10_21136_CMJ_2019_0039_18
ER  - 
%0 Journal Article
%A Aaghabali, Mehdi
%A Bien, Mai Hoang
%T Certain simple maximal subfields in division rings
%J Czechoslovak Mathematical Journal
%D 2019
%P 1053-1060
%V 69
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0039-18/
%R 10.21136/CMJ.2019.0039-18
%G en
%F 10_21136_CMJ_2019_0039_18
Aaghabali, Mehdi; Bien, Mai Hoang. Certain simple maximal subfields in division rings. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1053-1060. doi: 10.21136/CMJ.2019.0039-18

[1] Aaghabali, M., Akbari, S., Bien, M. H.: Division algebras with left algebraic commutators. Algebr. Represent. Theory 21 (2018), 807-816. | DOI | MR | JFM

[2] Albert, A. A., Muckenhoupt, B.: On matrices of trace zeros. Mich. Math. J. 4 (1957), 1-3. | DOI | MR | JFM

[3] Amitsur, S. A.: Rational identities and applications to algebra and geometry. J. Algebra 3 (1966), 304-359. | DOI | MR | JFM

[4] Amitsur, S. A., Rowen, L. H.: Elements of reduced trace 0. Isr. J. Math. 87 (1994), 161-179. | DOI | MR | JFM

[5] Beidar, K. I., Martindale, W. S., III, Mikhalev, A. V.: Rings with Generalized Identities. Pure and Applied Mathematics 196, Marcel Dekker, New York (1996). | MR | JFM

[6] Chebotar, M. A., Fong, Y., Lee, P.-H.: On division rings with algebraic commutators of bounded degree. Manuscr. Math. 113 (2004), 153-164. | DOI | MR | JFM

[7] Chiba, K.: Generalized rational identities of subnormal subgroups of skew fields. Proc. Am. Math. Soc. 124 (1996), 1649-1653. | DOI | MR | JFM

[8] Hai, B. X., Dung, T. H., Bien, M. H.: Almost subnormal subgroups in division rings with generalized algebraic rational identities. Available at | arXiv

[9] Lam, T. Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics 131, Springer, New York (2001). | DOI | MR | JFM

[10] Mahdavi-Hezavehi, M.: Extension of valuations on derived groups of division rings. Commun. Algebra 23 (1995), 913-926. | DOI | MR | JFM

[11] Mahdavi-Hezavehi, M.: Commutators in division rings revisited. Bull. Iran. Math. Soc. 26 (2000), 7-88. | MR | JFM

[12] Mahdavi-Hezavehi, M., Akbari-Feyzaabaadi, S., Mehraabaadi, M., Hajie-Abolhassan, H.: On derived groups of division rings. II. Commun. Algebra 23 (1995), 2881-2887. | DOI | MR | JFM

[13] Thompson, R. C.: Commutators in the special and general linear groups. Trans. Am. Math. Soc. 101 (1961), 16-33. | DOI | MR | JFM

Cité par Sources :