Certain simple maximal subfields in division rings
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1053-1060
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $D$ be a division ring finite dimensional over its center $F$. The goal of this paper is to prove that for any positive integer $n$ there exists $a\in D^{(n)},$ the $n$th multiplicative derived subgroup such that $F(a)$ is a maximal subfield of $D$. We also show that a single depth-$n$ iterated additive commutator would generate a maximal subfield of $D.$
DOI :
10.21136/CMJ.2019.0039-18
Classification :
16K20, 16R50, 17A35
Keywords: division ring; rational identity; maximal subfield
Keywords: division ring; rational identity; maximal subfield
@article{10_21136_CMJ_2019_0039_18,
author = {Aaghabali, Mehdi and Bien, Mai Hoang},
title = {Certain simple maximal subfields in division rings},
journal = {Czechoslovak Mathematical Journal},
pages = {1053--1060},
publisher = {mathdoc},
volume = {69},
number = {4},
year = {2019},
doi = {10.21136/CMJ.2019.0039-18},
mrnumber = {4039619},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0039-18/}
}
TY - JOUR AU - Aaghabali, Mehdi AU - Bien, Mai Hoang TI - Certain simple maximal subfields in division rings JO - Czechoslovak Mathematical Journal PY - 2019 SP - 1053 EP - 1060 VL - 69 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0039-18/ DO - 10.21136/CMJ.2019.0039-18 LA - en ID - 10_21136_CMJ_2019_0039_18 ER -
%0 Journal Article %A Aaghabali, Mehdi %A Bien, Mai Hoang %T Certain simple maximal subfields in division rings %J Czechoslovak Mathematical Journal %D 2019 %P 1053-1060 %V 69 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0039-18/ %R 10.21136/CMJ.2019.0039-18 %G en %F 10_21136_CMJ_2019_0039_18
Aaghabali, Mehdi; Bien, Mai Hoang. Certain simple maximal subfields in division rings. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1053-1060. doi: 10.21136/CMJ.2019.0039-18
Cité par Sources :