Keywords: multi-Morrey space; multilinear maximal function; multilinear fractional integral operator; multilinear Calderón-Zygmund operator
@article{10_21136_CMJ_2019_0031_18,
author = {He, Suixin},
title = {Multi-Morrey spaces for non-doubling measures},
journal = {Czechoslovak Mathematical Journal},
pages = {1039--1052},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0031-18},
mrnumber = {4039618},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0031-18/}
}
TY - JOUR AU - He, Suixin TI - Multi-Morrey spaces for non-doubling measures JO - Czechoslovak Mathematical Journal PY - 2019 SP - 1039 EP - 1052 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0031-18/ DO - 10.21136/CMJ.2019.0031-18 LA - en ID - 10_21136_CMJ_2019_0031_18 ER -
He, Suixin. Multi-Morrey spaces for non-doubling measures. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1039-1052. doi: 10.21136/CMJ.2019.0031-18
[1] Adams, D. R.: A note on Riesz potentials. Duke Math. J. 42 (1975), 765-778. | DOI | MR | JFM
[2] García-Cuerva, J., Gatto, A. E.: Boundedness properties of fractional integral operators associated to non-doubling measures. Stud. Math. 162 (2004), 245-261. | DOI | MR | JFM
[3] García-Cuerva, J., Martell, J. M.: Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces. Indiana Univ. Math. J. 50 (2001), 1241-1280. | DOI | MR | JFM
[4] Iida, T., Sato, E., Sawano, Y., Tanaka, H.: Sharp bounds for multilinear fractional integral operators on Morrey type spaces. Positivity 16 (2012), 339-358. | DOI | MR | JFM
[5] Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., Trujillo-González, R.: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. Math. 220 (2009), 1222-1264. | DOI | MR | JFM
[6] Lin, H.-B., Yang, D.-C.: Endpoint estimates for multilinear fractional integrals with non-doubling measures. Acta Math. Appl. Sin., Engl. Ser. 30 (2014), 755-764. | DOI | MR | JFM
[7] C. B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43 (1938), 126-166. | DOI | MR | JFM
[8] Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. 1997 (1997), 703-726. | DOI | MR | JFM
[9] Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. 1998 (1998), 463-487. | DOI | MR | JFM
[10] Nazarov, F., Treil, S., Volberg, A.: The {$Tb$}-theorem on non-homogeneous spaces. Acta Math. 190 (2003), 151-239. | DOI | MR | JFM
[11] Sawano, Y.: Generalized Morrey spaces for non-doubling measures. NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 413-425. | DOI | MR | JFM
[12] Sawano, Y., Tanaka, H.: Morrey spaces for non-doubling measures. Acta Math. Sin., Engl. Ser. 21 (2005), 1535-1544. | DOI | MR | JFM
[13] Tolsa, X.: BMO, {$H^1$}, and Calderón-Zygmund operators for non doubling measures. Math. Ann. 319 (2001), 89-149. | DOI | MR | JFM
[14] Tolsa, X.: Painlevé's problem and the semiadditivity of analytic capacity. Acta Math. 190 (2003), 105-149. | DOI | MR | JFM
[15] Tolsa, X.: The space {$H^1$} for nondoubling measures in terms of a grand maximal operator. Trans. Am. Math. Soc. 355 (2003), 315-348. | DOI | MR | JFM
[16] Tolsa, X.: The semiadditivity of continuous analytic capacity and the inner boundary conjecture. Am. J. Math. 126 (2004), 523-567. | DOI | MR | JFM
[17] Zhou, J., Wang, D.: Lipschitz spaces and fractional integral operators associated with nonhomogeneous metric measure spaces. Abstr. Appl. Anal. (2014), Article ID 174010, 8 pages. | DOI | MR | JFM
Cité par Sources :