Multi-Morrey spaces for non-doubling measures
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1039-1052
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The spaces of multi-Morrey type for positive Radon measures satisfying a growth condition on $\mathbb {R}^{d}$ are introduced. After defining the spaces, we investigate the multilinear maximal function, the multilinear fractional integral operator and the multilinear Calderón-Zygmund operators, respectively, from multi-Morrey spaces to Morrey spaces.
The spaces of multi-Morrey type for positive Radon measures satisfying a growth condition on $\mathbb {R}^{d}$ are introduced. After defining the spaces, we investigate the multilinear maximal function, the multilinear fractional integral operator and the multilinear Calderón-Zygmund operators, respectively, from multi-Morrey spaces to Morrey spaces.
DOI : 10.21136/CMJ.2019.0031-18
Classification : 42B25, 42B35
Keywords: multi-Morrey space; multilinear maximal function; multilinear fractional integral operator; multilinear Calderón-Zygmund operator
@article{10_21136_CMJ_2019_0031_18,
     author = {He, Suixin},
     title = {Multi-Morrey spaces for non-doubling measures},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1039--1052},
     year = {2019},
     volume = {69},
     number = {4},
     doi = {10.21136/CMJ.2019.0031-18},
     mrnumber = {4039618},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0031-18/}
}
TY  - JOUR
AU  - He, Suixin
TI  - Multi-Morrey spaces for non-doubling measures
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 1039
EP  - 1052
VL  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0031-18/
DO  - 10.21136/CMJ.2019.0031-18
LA  - en
ID  - 10_21136_CMJ_2019_0031_18
ER  - 
%0 Journal Article
%A He, Suixin
%T Multi-Morrey spaces for non-doubling measures
%J Czechoslovak Mathematical Journal
%D 2019
%P 1039-1052
%V 69
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0031-18/
%R 10.21136/CMJ.2019.0031-18
%G en
%F 10_21136_CMJ_2019_0031_18
He, Suixin. Multi-Morrey spaces for non-doubling measures. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1039-1052. doi: 10.21136/CMJ.2019.0031-18

[1] Adams, D. R.: A note on Riesz potentials. Duke Math. J. 42 (1975), 765-778. | DOI | MR | JFM

[2] García-Cuerva, J., Gatto, A. E.: Boundedness properties of fractional integral operators associated to non-doubling measures. Stud. Math. 162 (2004), 245-261. | DOI | MR | JFM

[3] García-Cuerva, J., Martell, J. M.: Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces. Indiana Univ. Math. J. 50 (2001), 1241-1280. | DOI | MR | JFM

[4] Iida, T., Sato, E., Sawano, Y., Tanaka, H.: Sharp bounds for multilinear fractional integral operators on Morrey type spaces. Positivity 16 (2012), 339-358. | DOI | MR | JFM

[5] Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., Trujillo-González, R.: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. Math. 220 (2009), 1222-1264. | DOI | MR | JFM

[6] Lin, H.-B., Yang, D.-C.: Endpoint estimates for multilinear fractional integrals with non-doubling measures. Acta Math. Appl. Sin., Engl. Ser. 30 (2014), 755-764. | DOI | MR | JFM

[7] C. B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43 (1938), 126-166. | DOI | MR | JFM

[8] Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. 1997 (1997), 703-726. | DOI | MR | JFM

[9] Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. 1998 (1998), 463-487. | DOI | MR | JFM

[10] Nazarov, F., Treil, S., Volberg, A.: The {$Tb$}-theorem on non-homogeneous spaces. Acta Math. 190 (2003), 151-239. | DOI | MR | JFM

[11] Sawano, Y.: Generalized Morrey spaces for non-doubling measures. NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 413-425. | DOI | MR | JFM

[12] Sawano, Y., Tanaka, H.: Morrey spaces for non-doubling measures. Acta Math. Sin., Engl. Ser. 21 (2005), 1535-1544. | DOI | MR | JFM

[13] Tolsa, X.: BMO, {$H^1$}, and Calderón-Zygmund operators for non doubling measures. Math. Ann. 319 (2001), 89-149. | DOI | MR | JFM

[14] Tolsa, X.: Painlevé's problem and the semiadditivity of analytic capacity. Acta Math. 190 (2003), 105-149. | DOI | MR | JFM

[15] Tolsa, X.: The space {$H^1$} for nondoubling measures in terms of a grand maximal operator. Trans. Am. Math. Soc. 355 (2003), 315-348. | DOI | MR | JFM

[16] Tolsa, X.: The semiadditivity of continuous analytic capacity and the inner boundary conjecture. Am. J. Math. 126 (2004), 523-567. | DOI | MR | JFM

[17] Zhou, J., Wang, D.: Lipschitz spaces and fractional integral operators associated with nonhomogeneous metric measure spaces. Abstr. Appl. Anal. (2014), Article ID 174010, 8 pages. | DOI | MR | JFM

Cité par Sources :