Multi-Morrey spaces for non-doubling measures
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1039-1052
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The spaces of multi-Morrey type for positive Radon measures satisfying a growth condition on $\mathbb {R}^{d}$ are introduced. After defining the spaces, we investigate the multilinear maximal function, the multilinear fractional integral operator and the multilinear Calderón-Zygmund operators, respectively, from multi-Morrey spaces to Morrey spaces.
DOI :
10.21136/CMJ.2019.0031-18
Classification :
42B25, 42B35
Keywords: multi-Morrey space; multilinear maximal function; multilinear fractional integral operator; multilinear Calderón-Zygmund operator
Keywords: multi-Morrey space; multilinear maximal function; multilinear fractional integral operator; multilinear Calderón-Zygmund operator
@article{10_21136_CMJ_2019_0031_18,
author = {He, Suixin},
title = {Multi-Morrey spaces for non-doubling measures},
journal = {Czechoslovak Mathematical Journal},
pages = {1039--1052},
publisher = {mathdoc},
volume = {69},
number = {4},
year = {2019},
doi = {10.21136/CMJ.2019.0031-18},
mrnumber = {4039618},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0031-18/}
}
TY - JOUR AU - He, Suixin TI - Multi-Morrey spaces for non-doubling measures JO - Czechoslovak Mathematical Journal PY - 2019 SP - 1039 EP - 1052 VL - 69 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0031-18/ DO - 10.21136/CMJ.2019.0031-18 LA - en ID - 10_21136_CMJ_2019_0031_18 ER -
He, Suixin. Multi-Morrey spaces for non-doubling measures. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1039-1052. doi: 10.21136/CMJ.2019.0031-18
Cité par Sources :