On linear preservers of two-sided gut-majorization on ${\bf M}_{n,m}$
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 791-801 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For $X,Y \in {\bf M}_{n,m}$ it is said that $X$ is gut-majorized by $Y$, and we write $ X\prec _{\rm gut} Y$, if there exists an $n$-by-$n$ upper triangular g-row stochastic matrix $R$ such that $X=RY$. Define the relation $\sim _{\rm gut}$ as follows. $X\sim _{\rm gut}Y$ if $X$ is gut-majorized by $Y$ and $Y$ is gut-majorized by $X$. The (strong) linear preservers of $\prec _{\rm gut}$ on $\mathbb {R}^{n}$ and strong linear preservers of this relation on ${\bf M}_{n,m}$ have been characterized before. This paper characterizes all (strong) linear preservers and strong linear preservers of $\sim _{\rm gut}$ on $\mathbb {R}^{n}$ and ${\bf M}_{n,m}$.
For $X,Y \in {\bf M}_{n,m}$ it is said that $X$ is gut-majorized by $Y$, and we write $ X\prec _{\rm gut} Y$, if there exists an $n$-by-$n$ upper triangular g-row stochastic matrix $R$ such that $X=RY$. Define the relation $\sim _{\rm gut}$ as follows. $X\sim _{\rm gut}Y$ if $X$ is gut-majorized by $Y$ and $Y$ is gut-majorized by $X$. The (strong) linear preservers of $\prec _{\rm gut}$ on $\mathbb {R}^{n}$ and strong linear preservers of this relation on ${\bf M}_{n,m}$ have been characterized before. This paper characterizes all (strong) linear preservers and strong linear preservers of $\sim _{\rm gut}$ on $\mathbb {R}^{n}$ and ${\bf M}_{n,m}$.
DOI : 10.21136/CMJ.2018.0648-16
Classification : 15A04, 15A21
Keywords: g-row stochastic matrix; gut-majorization; linear preserver; strong linear preserver; two-sided gut-majorization
@article{10_21136_CMJ_2018_0648_16,
     author = {Ilkhanizadeh Manesh, Asma and Mohammadhasani, Ahmad},
     title = {On linear preservers of two-sided gut-majorization on ${\bf M}_{n,m}$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {791--801},
     year = {2018},
     volume = {68},
     number = {3},
     doi = {10.21136/CMJ.2018.0648-16},
     mrnumber = {3851891},
     zbl = {06986972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0648-16/}
}
TY  - JOUR
AU  - Ilkhanizadeh Manesh, Asma
AU  - Mohammadhasani, Ahmad
TI  - On linear preservers of two-sided gut-majorization on ${\bf M}_{n,m}$
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 791
EP  - 801
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0648-16/
DO  - 10.21136/CMJ.2018.0648-16
LA  - en
ID  - 10_21136_CMJ_2018_0648_16
ER  - 
%0 Journal Article
%A Ilkhanizadeh Manesh, Asma
%A Mohammadhasani, Ahmad
%T On linear preservers of two-sided gut-majorization on ${\bf M}_{n,m}$
%J Czechoslovak Mathematical Journal
%D 2018
%P 791-801
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0648-16/
%R 10.21136/CMJ.2018.0648-16
%G en
%F 10_21136_CMJ_2018_0648_16
Ilkhanizadeh Manesh, Asma; Mohammadhasani, Ahmad. On linear preservers of two-sided gut-majorization on ${\bf M}_{n,m}$. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 791-801. doi: 10.21136/CMJ.2018.0648-16

[1] Armandnejad, A., Manesh, A. Ilkhanizadeh: GUT-majorization and its linear preservers. Electron. J. Linear Algebra 23 (2012), 646-654. | DOI | MR | JFM

[2] Brualdi, R. A., Dahl, G.: An extension of the polytope of doubly stochastic matrices. Linear Multilinear Algebra 61 (2013), 393-408. | DOI | MR | JFM

[3] Hasani, A. M., Radjabalipour, M.: The structure of linear operators strongly preserving majorizations of matrices. Electron. J. Linear Algebra 15 (2006), 260-268. | DOI | MR | JFM

[4] Hasani, A. M., Radjabalipour, M.: On linear preservers of (right) matrix majorization. Linear Algebra Appl. 423 (2007), 255-261. | DOI | MR | JFM

[5] Manesh, A. Ilkhanizadeh: On linear preservers of sgut-majorization on $M_{n,m}$. Bull. Iran. Math. Soc. 42 (2016), 471-481. | MR | JFM

[6] Manesh, A. Ilkhanizadeh: Right gut-majorization on $M_{n,m}$. Electron. J. Linear Algebra 31 (2016), 13-26. | DOI | MR | JFM

[7] Manesh, A. Ilkhanizadeh, Armandnejad, A.: Ut-majorization on ${\Bbb R}^n$ and its linear preservers. Operator Theory, Operator Algebras and Applications M. Bastos Operator Theory: Advances and Applications 242, Birkhäuser, Basel (2014), 253-259. | DOI | MR | JFM

[8] Li, C. K., Poon, E.: Linear operators preserving directional majorization. Linear Algebra Appl. 235 (2001), 141-149. | DOI | MR | JFM

[9] Motlaghian, S. M., Armandnejad, A., Hall, F. J.: Linear preservers of row-dense matrices. Czech. Math. J. 66 (2016), 847-858. | DOI | MR | JFM

[10] Niezgoda, M.: Cone orderings, group majorizations and similarly separable vectors. Linear Algebra Appl. 436 (2012), 579-594. | DOI | MR | JFM

Cité par Sources :