Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 771-789 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We discuss the validity of the Helmholtz decomposition of the Muckenhoupt $A_{p}$-weighted $L^{p}$-space $(L^{p}_{w}(\Omega ))^{n}$ for any domain $\Omega $ in $\mathbb {R}^{n}$, $n \in \mathbb {Z}$, $n\geq 2$, $1
We discuss the validity of the Helmholtz decomposition of the Muckenhoupt $A_{p}$-weighted $L^{p}$-space $(L^{p}_{w}(\Omega ))^{n}$ for any domain $\Omega $ in $\mathbb {R}^{n}$, $n \in \mathbb {Z}$, $n\geq 2$, $1$ and Muckenhoupt $A_{p}$-weight $w \in A_{p}$. Set $p':={p}/{(p-1)}$ and $w':=w^{-{1}/{(p-1)}}$. Then the Helmholtz decomposition of $(L^{p}_{w}(\Omega ))^{n}$ and $(L^{p'}_{w'}(\Omega ))^{n}$ and the variational estimate of $L^{p}_{w,\pi }(\Omega )$ and $L^{p'}_{w',\pi }(\Omega )$ are equivalent. Furthermore, we can replace $L^{p}_{w,\pi }(\Omega )$ and $L^{p'}_{w',\pi }(\Omega )$ by $L^{p}_{w,\sigma }(\Omega )$ and $L^{p'}_{w',\sigma }(\Omega )$, respectively. The proof is based on the reflexivity and orthogonality of $L^{p}_{w,\pi }(\Omega )$ and $L^{p}_{w,\sigma }(\Omega )$ and the Hahn-Banach theorem. As a corollary of our main result, we obtain the extrapolation theorem with the aid of the Helmholtz projection of $(L^{p}_{w}(\Omega ))^{n}$.
DOI : 10.21136/CMJ.2018.0646-16
Classification : 35Q30, 46E30, 76D05
Keywords: Helmholtz decomposition; Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces; variational estimate
@article{10_21136_CMJ_2018_0646_16,
     author = {Kakizawa, Ry\^ohei},
     title = {Equivalent conditions for the validity of the {Helmholtz} decomposition of {Muckenhoupt} $A_{p}$-weighted $L^{p}$-spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {771--789},
     year = {2018},
     volume = {68},
     number = {3},
     doi = {10.21136/CMJ.2018.0646-16},
     mrnumber = {3851890},
     zbl = {06986971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0646-16/}
}
TY  - JOUR
AU  - Kakizawa, Ryôhei
TI  - Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 771
EP  - 789
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0646-16/
DO  - 10.21136/CMJ.2018.0646-16
LA  - en
ID  - 10_21136_CMJ_2018_0646_16
ER  - 
%0 Journal Article
%A Kakizawa, Ryôhei
%T Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces
%J Czechoslovak Mathematical Journal
%D 2018
%P 771-789
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0646-16/
%R 10.21136/CMJ.2018.0646-16
%G en
%F 10_21136_CMJ_2018_0646_16
Kakizawa, Ryôhei. Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 771-789. doi: 10.21136/CMJ.2018.0646-16

[1] Rham, G. de: Variétés différentiables. Formes, courants, formes harmoniques. Publications de l'Institut de Mathématique de l'Université de Nancago III. Actualités Scientifiques et Industrielles 1222 b, Hermann, Paris (1973), French. | MR | JFM

[2] Fabes, E., Mendez, O., Mitrea, M.: Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159 (1998), 323-368. | DOI | MR | JFM

[3] Farwig, R.: Weighted $L^{q}$-Helmholtz decompositions in infinite cylinders and in infinite layers. Adv. Differ. Equ. 8 (2003), 357-384. | MR | JFM

[4] Farwig, R., Kozono, H., Sohr, H.: An $L^{q}$-approach to Stokes and Navier-Stokes equations in general domains. Acta Math. 195 (2005), 21-53. | DOI | MR | JFM

[5] Farwig, R., Kozono, H., Sohr, H.: On the Helmholtz decomposition in general unbounded domains. Arch. Math. 88 (2007), 239-248. | DOI | MR | JFM

[6] Farwig, R., Sohr, H.: Weighted $L^q$-theory for the Stokes resolvent in exterior domains. J. Math. Soc. Japan 49 (1997), 251-288. | DOI | MR | JFM

[7] Fröhlich, A.: The Helmholtz decomposition of weighted $L^{q}$-spaces for Muckenhoupt weights. Ann. Univ. Ferrara, Nuova Ser., Sez. VII 46 (2000), 11-19. | MR | JFM

[8] Fröhlich, A.: Maximal regularity for the non-stationary Stokes system in an aperture domain. J. Evol. Equ. 2 (2002), 471-493. | DOI | MR | JFM

[9] Fröhlich, A.: The Stokes operator in weighted $L^{q}$-spaces I. Weighted estimates for the Stokes resolvent problem in a half space. J. Math. Fluid Mech. 5 (2003), 166-199. | DOI | MR | JFM

[10] Fröhlich, A.: The Stokes operator in weighted $L^{q}$-spaces II. Weighted resolvent estimates and maximal $L^{p}$-regularity. Math. Ann. 339 (2007), 287-316. | DOI | MR | JFM

[11] García-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies 116, North-Holland, Amsterdam (1985). | DOI | MR | JFM

[12] Geng, J., Shen, Z.: The Neumann problem and Helmholtz decomposition in convex domains. J. Funct. Anal. 259 (2010), 2147-2164. | DOI | MR | JFM

[13] Kim, A. S., Shen, Z.: The Neumann problem in $L^{p}$ on Lipschitz and convex domains. J. Funct. Anal. 255 (2008), 1817-1830. | DOI | MR | JFM

[14] Kobayashi, T., Kubo, T.: Weighted $L^{p}$-$L^{q}$ estimates of the Stokes semigroup in some unbounded domains. Tsukuba J. Math. 37 (2013), 179-205. | DOI | MR | JFM

[15] Lang, J., Méndez, O.: Potential techniques and regularity of boundary value problems in exterior non-smooth domains. Regularity in exterior domains. Potential Anal. 24 (2006), 385-406. | DOI | MR | JFM

[16] Maekawa, Y., Miura, H.: Remark on the Helmholtz decomposition in domains with noncompact boundary. Math. Ann. 359 (2014), 1077-1095. | DOI | MR | JFM

[17] Simader, C. G., Sohr, H., Varnhorn, W.: Necessary and sufficient conditions for the existence of Helmholtz decompositions in general domains. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 60 (2014), 245-262. | DOI | MR | JFM

Cité par Sources :