Keywords: Helmholtz decomposition; Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces; variational estimate
@article{10_21136_CMJ_2018_0646_16,
author = {Kakizawa, Ry\^ohei},
title = {Equivalent conditions for the validity of the {Helmholtz} decomposition of {Muckenhoupt} $A_{p}$-weighted $L^{p}$-spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {771--789},
year = {2018},
volume = {68},
number = {3},
doi = {10.21136/CMJ.2018.0646-16},
mrnumber = {3851890},
zbl = {06986971},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0646-16/}
}
TY - JOUR
AU - Kakizawa, Ryôhei
TI - Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces
JO - Czechoslovak Mathematical Journal
PY - 2018
SP - 771
EP - 789
VL - 68
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0646-16/
DO - 10.21136/CMJ.2018.0646-16
LA - en
ID - 10_21136_CMJ_2018_0646_16
ER -
%0 Journal Article
%A Kakizawa, Ryôhei
%T Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces
%J Czechoslovak Mathematical Journal
%D 2018
%P 771-789
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0646-16/
%R 10.21136/CMJ.2018.0646-16
%G en
%F 10_21136_CMJ_2018_0646_16
Kakizawa, Ryôhei. Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 771-789. doi: 10.21136/CMJ.2018.0646-16
[1] Rham, G. de: Variétés différentiables. Formes, courants, formes harmoniques. Publications de l'Institut de Mathématique de l'Université de Nancago III. Actualités Scientifiques et Industrielles 1222 b, Hermann, Paris (1973), French. | MR | JFM
[2] Fabes, E., Mendez, O., Mitrea, M.: Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159 (1998), 323-368. | DOI | MR | JFM
[3] Farwig, R.: Weighted $L^{q}$-Helmholtz decompositions in infinite cylinders and in infinite layers. Adv. Differ. Equ. 8 (2003), 357-384. | MR | JFM
[4] Farwig, R., Kozono, H., Sohr, H.: An $L^{q}$-approach to Stokes and Navier-Stokes equations in general domains. Acta Math. 195 (2005), 21-53. | DOI | MR | JFM
[5] Farwig, R., Kozono, H., Sohr, H.: On the Helmholtz decomposition in general unbounded domains. Arch. Math. 88 (2007), 239-248. | DOI | MR | JFM
[6] Farwig, R., Sohr, H.: Weighted $L^q$-theory for the Stokes resolvent in exterior domains. J. Math. Soc. Japan 49 (1997), 251-288. | DOI | MR | JFM
[7] Fröhlich, A.: The Helmholtz decomposition of weighted $L^{q}$-spaces for Muckenhoupt weights. Ann. Univ. Ferrara, Nuova Ser., Sez. VII 46 (2000), 11-19. | MR | JFM
[8] Fröhlich, A.: Maximal regularity for the non-stationary Stokes system in an aperture domain. J. Evol. Equ. 2 (2002), 471-493. | DOI | MR | JFM
[9] Fröhlich, A.: The Stokes operator in weighted $L^{q}$-spaces I. Weighted estimates for the Stokes resolvent problem in a half space. J. Math. Fluid Mech. 5 (2003), 166-199. | DOI | MR | JFM
[10] Fröhlich, A.: The Stokes operator in weighted $L^{q}$-spaces II. Weighted resolvent estimates and maximal $L^{p}$-regularity. Math. Ann. 339 (2007), 287-316. | DOI | MR | JFM
[11] García-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies 116, North-Holland, Amsterdam (1985). | DOI | MR | JFM
[12] Geng, J., Shen, Z.: The Neumann problem and Helmholtz decomposition in convex domains. J. Funct. Anal. 259 (2010), 2147-2164. | DOI | MR | JFM
[13] Kim, A. S., Shen, Z.: The Neumann problem in $L^{p}$ on Lipschitz and convex domains. J. Funct. Anal. 255 (2008), 1817-1830. | DOI | MR | JFM
[14] Kobayashi, T., Kubo, T.: Weighted $L^{p}$-$L^{q}$ estimates of the Stokes semigroup in some unbounded domains. Tsukuba J. Math. 37 (2013), 179-205. | DOI | MR | JFM
[15] Lang, J., Méndez, O.: Potential techniques and regularity of boundary value problems in exterior non-smooth domains. Regularity in exterior domains. Potential Anal. 24 (2006), 385-406. | DOI | MR | JFM
[16] Maekawa, Y., Miura, H.: Remark on the Helmholtz decomposition in domains with noncompact boundary. Math. Ann. 359 (2014), 1077-1095. | DOI | MR | JFM
[17] Simader, C. G., Sohr, H., Varnhorn, W.: Necessary and sufficient conditions for the existence of Helmholtz decompositions in general domains. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 60 (2014), 245-262. | DOI | MR | JFM
Cité par Sources :