Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 771-789.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We discuss the validity of the Helmholtz decomposition of the Muckenhoupt $A_{p}$-weighted $L^{p}$-space $(L^{p}_{w}(\Omega ))^{n}$ for any domain $\Omega $ in $\mathbb {R}^{n}$, $n \in \mathbb {Z}$, $n\geq 2$, $1$ and Muckenhoupt $A_{p}$-weight $w \in A_{p}$. Set $p':={p}/{(p-1)}$ and $w':=w^{-{1}/{(p-1)}}$. Then the Helmholtz decomposition of $(L^{p}_{w}(\Omega ))^{n}$ and $(L^{p'}_{w'}(\Omega ))^{n}$ and the variational estimate of $L^{p}_{w,\pi }(\Omega )$ and $L^{p'}_{w',\pi }(\Omega )$ are equivalent. Furthermore, we can replace $L^{p}_{w,\pi }(\Omega )$ and $L^{p'}_{w',\pi }(\Omega )$ by $L^{p}_{w,\sigma }(\Omega )$ and $L^{p'}_{w',\sigma }(\Omega )$, respectively. The proof is based on the reflexivity and orthogonality of $L^{p}_{w,\pi }(\Omega )$ and $L^{p}_{w,\sigma }(\Omega )$ and the Hahn-Banach theorem. As a corollary of our main result, we obtain the extrapolation theorem with the aid of the Helmholtz projection of $(L^{p}_{w}(\Omega ))^{n}$.
DOI : 10.21136/CMJ.2018.0646-16
Classification : 35Q30, 46E30, 76D05
Keywords: Helmholtz decomposition; Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces; variational estimate
@article{10_21136_CMJ_2018_0646_16,
     author = {Kakizawa, Ry\^ohei},
     title = {Equivalent conditions for the validity of the {Helmholtz} decomposition of {Muckenhoupt} $A_{p}$-weighted $L^{p}$-spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {771--789},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2018},
     doi = {10.21136/CMJ.2018.0646-16},
     mrnumber = {3851890},
     zbl = {06986971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0646-16/}
}
TY  - JOUR
AU  - Kakizawa, Ryôhei
TI  - Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 771
EP  - 789
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0646-16/
DO  - 10.21136/CMJ.2018.0646-16
LA  - en
ID  - 10_21136_CMJ_2018_0646_16
ER  - 
%0 Journal Article
%A Kakizawa, Ryôhei
%T Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces
%J Czechoslovak Mathematical Journal
%D 2018
%P 771-789
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0646-16/
%R 10.21136/CMJ.2018.0646-16
%G en
%F 10_21136_CMJ_2018_0646_16
Kakizawa, Ryôhei. Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 771-789. doi : 10.21136/CMJ.2018.0646-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0646-16/

Cité par Sources :