Integral averaging technique for oscillation of damped half-linear oscillators
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 755-770 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is concerned with the oscillatory behavior of the damped half-linear oscillator $(a(t)\phi _p(x'))'+b(t)\phi _p(x')+c(t)\phi _p(x) = 0$, where $\phi _p(x) = |x|^{p-1}\mathop {\rm sgn} x$ for $x \in \mathbb {R}$ and $p > 1$. A sufficient condition is established for oscillation of all nontrivial solutions of the damped half-linear oscillator under the integral averaging conditions. The main result can be given by using a generalized Young's inequality and the Riccati type technique. Some examples are included to illustrate the result. Especially, an example which asserts that all nontrivial solutions are oscillatory if and only if $p \neq 2$ is presented.
This paper is concerned with the oscillatory behavior of the damped half-linear oscillator $(a(t)\phi _p(x'))'+b(t)\phi _p(x')+c(t)\phi _p(x) = 0$, where $\phi _p(x) = |x|^{p-1}\mathop {\rm sgn} x$ for $x \in \mathbb {R}$ and $p > 1$. A sufficient condition is established for oscillation of all nontrivial solutions of the damped half-linear oscillator under the integral averaging conditions. The main result can be given by using a generalized Young's inequality and the Riccati type technique. Some examples are included to illustrate the result. Especially, an example which asserts that all nontrivial solutions are oscillatory if and only if $p \neq 2$ is presented.
DOI : 10.21136/CMJ.2018.0645-16
Classification : 34C10, 34C15
Keywords: damped half-linear oscillator; integral averaging technique; Riccati technique; generalized Young inequality; oscillatory solution
@article{10_21136_CMJ_2018_0645_16,
     author = {Enaka, Yukihide and Onitsuka, Masakazu},
     title = {Integral averaging technique for oscillation of damped half-linear oscillators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {755--770},
     year = {2018},
     volume = {68},
     number = {3},
     doi = {10.21136/CMJ.2018.0645-16},
     mrnumber = {3851889},
     zbl = {06986970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0645-16/}
}
TY  - JOUR
AU  - Enaka, Yukihide
AU  - Onitsuka, Masakazu
TI  - Integral averaging technique for oscillation of damped half-linear oscillators
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 755
EP  - 770
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0645-16/
DO  - 10.21136/CMJ.2018.0645-16
LA  - en
ID  - 10_21136_CMJ_2018_0645_16
ER  - 
%0 Journal Article
%A Enaka, Yukihide
%A Onitsuka, Masakazu
%T Integral averaging technique for oscillation of damped half-linear oscillators
%J Czechoslovak Mathematical Journal
%D 2018
%P 755-770
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0645-16/
%R 10.21136/CMJ.2018.0645-16
%G en
%F 10_21136_CMJ_2018_0645_16
Enaka, Yukihide; Onitsuka, Masakazu. Integral averaging technique for oscillation of damped half-linear oscillators. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 755-770. doi: 10.21136/CMJ.2018.0645-16

[1] Agarwal, R. P., Grace, S. R., O'Regan, D.: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic Publishers, Dordrecht (2002). | DOI | MR | JFM

[2] Çakmak, D.: Integral averaging technique for the interval oscillation criteria of certain second-order nonlinear differential equations. J. Math. Anal. Appl. 300 (2004), 408-425. | DOI | MR | JFM

[3] Cecchi, M., Došlá, Z., Došlý, O., Marini, M.: On the integral characterization of principal solutions for half-linear ODE. Electron. J. Qual. Theory Differ. Equ. 2013 (2013), Paper No. 12, 14 pages. | DOI | MR | JFM

[4] Coles, W. J.: A simple proof of a well-known oscillation theorem. Proc. Am. Math. Soc. 19 (1968), 507. | DOI | MR | JFM

[5] Coppel, W. A.: Disconjugacy. Lecture Notes in Mathematics 220, Springer, Berlin (1971). | DOI | MR | JFM

[6] Došlý, O.: Half-linear differential equations. Handbook of Differential Equations: Ordinary Differential Equations. Vol. I. Elsevier/North-Holland, Amsterdam (2004), 161-357 A. Cañada et al. | MR | JFM

[7] Došlý, O., Řehák, P.: Half-Linear Differential Equations. North-Holland Mathematics Studies 202, Elsevier Science, Amsterdam (2005). | DOI | MR | JFM

[8] Fišnarová, S., Mařík, R.: On constants in nonoscillation criteria for half-linear differential equations. Abstr. Appl. Anal. 2011 (2011), Article ID 638271, 15 pages. | DOI | MR | JFM

[9] Grace, S. R., Lalli, B. S.: Integral averaging and the oscillation of second order nonlinear differential equations. Ann. Mat. Pura Appl., IV. Ser. 151 (1988), 149-159. | DOI | MR | JFM

[10] Grace, S. R., Lalli, B. S.: Integral averaging techniques for the oscillation of second order nonlinear differential equations. J. Math. Anal. Appl. 149 (1990), 277-311. | DOI | MR | JFM

[11] Hartman, P.: Ordinary Differential Equations. John Wiley and Sons, New York (1964). | MR | JFM

[12] Hasil, P., Veselý, M.: Conditional oscillation of Riemann-Weber half-linear differential equations with asymptotically almost periodic coefficients. Stud. Sci. Math. Hung. 51 (2014), 303-321. | DOI | MR | JFM

[13] Hasil, P., Veselý, M.: Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients. Adv. Difference Equ. 2015 (2015), Article No. 190, 17 pages. | DOI | MR

[14] Hata, S., Sugie, J.: A necessary and sufficient condition for the global asymptotic stability of damped half-linear oscillators. Acta Math. Hung. 138 (2013), 156-172. | DOI | MR | JFM

[15] Kamenev, I. V.: An integral criterion for oscillation of linear differential equations of second order. Math. Notes 23 (1978), 136-138. English. Russian original translation from Mat. Zametki 23 1978 249-251. | DOI | MR | JFM

[16] Li, T., Rogovchenko, Y. V., Tang, S.: Oscillation of second-order nonlinear differential equations with damping. Math. Slovaca 64 (2014), 1227-1236. | DOI | MR | JFM

[17] Mirzov, J. D.: Asymptotic Properties of Solutions of Systems of Nonlinear Nonautonomous Ordinary Differential Equations. Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis. Mathematica 14, Masaryk University, Brno 14 (2004). | MR | JFM

[18] Onitsuka, M., Soeda, T.: Uniform asymptotic stability implies exponential stability for nonautonomous half-linear differential systems. Adv. Difference Equ. 2015 (2015), Article No. 158, 24 pages. | DOI | MR

[19] Onitsuka, M., Sugie, J.: Uniform global asymptotic stability for half-linear differential systems with time-varying coefficients. Proc. R. Soc. Edinb., Sect. A, Math. 141 (2011), 1083-1101. | DOI | MR | JFM

[20] Onitsuka, M., Tanaka, S.: Characteristic equation for autonomous planar half-linear differential systems. Acta Math. Hung. 152 (2017), 336-364. | DOI | MR | JFM

[21] Pašić, M.: Fite-Wintner-Leighton-type oscillation criteria for second-order differential equations with nonlinear damping. Abstr. Appl. Anal. 2013 (2013), Article ID 852180, 10 pages. | DOI | MR | JFM

[22] Řehák, P.: A Riccati technique for proving oscillation of a half-linear equation. Electron. J. Differ. Equ. 2008 (2008), Article No. 105, 8 pages. | MR | JFM

[23] Řehák, P.: Comparison of nonlinearities in oscillation theory of half-linear differential equations. Acta Math. Hung. 121 (2008), 93-105. | DOI | MR | JFM

[24] Řehák, P.: Exponential estimates for solutions of half-linear differential equations. Acta Math. Hung. 147 (2015), 158-171. | DOI | MR | JFM

[25] Sugie, J.: Global asymptotic stability for damped half-linear oscillators. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 7151-7167. | DOI | MR | JFM

[26] Sugie, J., Matsumura, K.: A nonoscillation theorem for half-linear differential equations with periodic coefficients. Appl. Math. Comput. 199 (2008), 447-455. | DOI | MR | JFM

[27] Sugie, J., Onitsuka, M.: Global asymptotic stability for damped half-linear differential equations. Acta Sci. Math. 73 (2007), 613-636. | MR | JFM

[28] Sugie, J., Onitsuka, M.: Growth conditions for uniform asymptotic stability of damped oscillators. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 98 (2014), 83-103. | DOI | MR | JFM

[29] Swanson, C. A.: Comparison and Oscillation Theory of Linear Differential Equations. Mathematics in Science and Engineering 48. Academic Press, New York (1968). | DOI | MR | JFM

[30] Tiryaki, A.: Oscillation criteria for a certain second-order nonlinear differential equations with deviating arguments. Electron. J. Qual. Theory Differ. Equ. 2009 (2009), Article No. 61, 11 pages. | DOI | MR | JFM

[31] Tiryaki, A., Çakmak, D., Ayanlar, B.: On the oscillation of certain second-order nonlinear differential equations. J. Math. Anal. Appl. 281 (2003), 565-574. | DOI | MR | JFM

[32] Tunç, E., Avcı, H.: New oscillation theorems for a class of second-order damped nonlinear differential equations. Ukr. Math. J. 63 (2012), 1441-1457. English. Russian original translation from Ukr. Mat. Zh. 63 2011 1263-1278. | DOI | MR | JFM

[33] Wintner, A.: A criterion of oscillatory stability. Q. Appl. Math. 7 (1949), 115-117. | DOI | MR | JFM

[34] Wong, J. S. W.: On Kamenev-type oscillation theorems for second-order differential equations with damping. J. Math. Anal. Appl. 258 (2001), 244-257. | DOI | MR | JFM

[35] Yamaoka, N.: Oscillation criteria for second-order damped nonlinear differential equations with {$p$}-Laplacian. J. Math. Anal. Appl. 325 (2007), 932-948. | DOI | MR | JFM

[36] Zhang, Q., Wang, L.: Oscillatory behavior of solutions for a class of second order nonlinear differential equation with perturbation. Acta Appl. Math. 110 (2010), 885-893. | DOI | MR | JFM

[37] Zheng, W., Sugie, J.: Parameter diagram for global asymptotic stability of damped half-linear oscillators. Monatsh. Math. 179 (2016), 149-160. | DOI | MR | JFM

[38] Zheng, Z.: Note on Wong's paper. J. Math. Anal. Appl. 274 (2002), 466-473. | DOI | MR | JFM

Cité par Sources :