Keywords: damped half-linear oscillator; integral averaging technique; Riccati technique; generalized Young inequality; oscillatory solution
@article{10_21136_CMJ_2018_0645_16,
author = {Enaka, Yukihide and Onitsuka, Masakazu},
title = {Integral averaging technique for oscillation of damped half-linear oscillators},
journal = {Czechoslovak Mathematical Journal},
pages = {755--770},
year = {2018},
volume = {68},
number = {3},
doi = {10.21136/CMJ.2018.0645-16},
mrnumber = {3851889},
zbl = {06986970},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0645-16/}
}
TY - JOUR AU - Enaka, Yukihide AU - Onitsuka, Masakazu TI - Integral averaging technique for oscillation of damped half-linear oscillators JO - Czechoslovak Mathematical Journal PY - 2018 SP - 755 EP - 770 VL - 68 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0645-16/ DO - 10.21136/CMJ.2018.0645-16 LA - en ID - 10_21136_CMJ_2018_0645_16 ER -
%0 Journal Article %A Enaka, Yukihide %A Onitsuka, Masakazu %T Integral averaging technique for oscillation of damped half-linear oscillators %J Czechoslovak Mathematical Journal %D 2018 %P 755-770 %V 68 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0645-16/ %R 10.21136/CMJ.2018.0645-16 %G en %F 10_21136_CMJ_2018_0645_16
Enaka, Yukihide; Onitsuka, Masakazu. Integral averaging technique for oscillation of damped half-linear oscillators. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 755-770. doi: 10.21136/CMJ.2018.0645-16
[1] Agarwal, R. P., Grace, S. R., O'Regan, D.: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic Publishers, Dordrecht (2002). | DOI | MR | JFM
[2] Çakmak, D.: Integral averaging technique for the interval oscillation criteria of certain second-order nonlinear differential equations. J. Math. Anal. Appl. 300 (2004), 408-425. | DOI | MR | JFM
[3] Cecchi, M., Došlá, Z., Došlý, O., Marini, M.: On the integral characterization of principal solutions for half-linear ODE. Electron. J. Qual. Theory Differ. Equ. 2013 (2013), Paper No. 12, 14 pages. | DOI | MR | JFM
[4] Coles, W. J.: A simple proof of a well-known oscillation theorem. Proc. Am. Math. Soc. 19 (1968), 507. | DOI | MR | JFM
[5] Coppel, W. A.: Disconjugacy. Lecture Notes in Mathematics 220, Springer, Berlin (1971). | DOI | MR | JFM
[6] Došlý, O.: Half-linear differential equations. Handbook of Differential Equations: Ordinary Differential Equations. Vol. I. Elsevier/North-Holland, Amsterdam (2004), 161-357 A. Cañada et al. | MR | JFM
[7] Došlý, O., Řehák, P.: Half-Linear Differential Equations. North-Holland Mathematics Studies 202, Elsevier Science, Amsterdam (2005). | DOI | MR | JFM
[8] Fišnarová, S., Mařík, R.: On constants in nonoscillation criteria for half-linear differential equations. Abstr. Appl. Anal. 2011 (2011), Article ID 638271, 15 pages. | DOI | MR | JFM
[9] Grace, S. R., Lalli, B. S.: Integral averaging and the oscillation of second order nonlinear differential equations. Ann. Mat. Pura Appl., IV. Ser. 151 (1988), 149-159. | DOI | MR | JFM
[10] Grace, S. R., Lalli, B. S.: Integral averaging techniques for the oscillation of second order nonlinear differential equations. J. Math. Anal. Appl. 149 (1990), 277-311. | DOI | MR | JFM
[11] Hartman, P.: Ordinary Differential Equations. John Wiley and Sons, New York (1964). | MR | JFM
[12] Hasil, P., Veselý, M.: Conditional oscillation of Riemann-Weber half-linear differential equations with asymptotically almost periodic coefficients. Stud. Sci. Math. Hung. 51 (2014), 303-321. | DOI | MR | JFM
[13] Hasil, P., Veselý, M.: Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients. Adv. Difference Equ. 2015 (2015), Article No. 190, 17 pages. | DOI | MR
[14] Hata, S., Sugie, J.: A necessary and sufficient condition for the global asymptotic stability of damped half-linear oscillators. Acta Math. Hung. 138 (2013), 156-172. | DOI | MR | JFM
[15] Kamenev, I. V.: An integral criterion for oscillation of linear differential equations of second order. Math. Notes 23 (1978), 136-138. English. Russian original translation from Mat. Zametki 23 1978 249-251. | DOI | MR | JFM
[16] Li, T., Rogovchenko, Y. V., Tang, S.: Oscillation of second-order nonlinear differential equations with damping. Math. Slovaca 64 (2014), 1227-1236. | DOI | MR | JFM
[17] Mirzov, J. D.: Asymptotic Properties of Solutions of Systems of Nonlinear Nonautonomous Ordinary Differential Equations. Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis. Mathematica 14, Masaryk University, Brno 14 (2004). | MR | JFM
[18] Onitsuka, M., Soeda, T.: Uniform asymptotic stability implies exponential stability for nonautonomous half-linear differential systems. Adv. Difference Equ. 2015 (2015), Article No. 158, 24 pages. | DOI | MR
[19] Onitsuka, M., Sugie, J.: Uniform global asymptotic stability for half-linear differential systems with time-varying coefficients. Proc. R. Soc. Edinb., Sect. A, Math. 141 (2011), 1083-1101. | DOI | MR | JFM
[20] Onitsuka, M., Tanaka, S.: Characteristic equation for autonomous planar half-linear differential systems. Acta Math. Hung. 152 (2017), 336-364. | DOI | MR | JFM
[21] Pašić, M.: Fite-Wintner-Leighton-type oscillation criteria for second-order differential equations with nonlinear damping. Abstr. Appl. Anal. 2013 (2013), Article ID 852180, 10 pages. | DOI | MR | JFM
[22] Řehák, P.: A Riccati technique for proving oscillation of a half-linear equation. Electron. J. Differ. Equ. 2008 (2008), Article No. 105, 8 pages. | MR | JFM
[23] Řehák, P.: Comparison of nonlinearities in oscillation theory of half-linear differential equations. Acta Math. Hung. 121 (2008), 93-105. | DOI | MR | JFM
[24] Řehák, P.: Exponential estimates for solutions of half-linear differential equations. Acta Math. Hung. 147 (2015), 158-171. | DOI | MR | JFM
[25] Sugie, J.: Global asymptotic stability for damped half-linear oscillators. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 7151-7167. | DOI | MR | JFM
[26] Sugie, J., Matsumura, K.: A nonoscillation theorem for half-linear differential equations with periodic coefficients. Appl. Math. Comput. 199 (2008), 447-455. | DOI | MR | JFM
[27] Sugie, J., Onitsuka, M.: Global asymptotic stability for damped half-linear differential equations. Acta Sci. Math. 73 (2007), 613-636. | MR | JFM
[28] Sugie, J., Onitsuka, M.: Growth conditions for uniform asymptotic stability of damped oscillators. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 98 (2014), 83-103. | DOI | MR | JFM
[29] Swanson, C. A.: Comparison and Oscillation Theory of Linear Differential Equations. Mathematics in Science and Engineering 48. Academic Press, New York (1968). | DOI | MR | JFM
[30] Tiryaki, A.: Oscillation criteria for a certain second-order nonlinear differential equations with deviating arguments. Electron. J. Qual. Theory Differ. Equ. 2009 (2009), Article No. 61, 11 pages. | DOI | MR | JFM
[31] Tiryaki, A., Çakmak, D., Ayanlar, B.: On the oscillation of certain second-order nonlinear differential equations. J. Math. Anal. Appl. 281 (2003), 565-574. | DOI | MR | JFM
[32] Tunç, E., Avcı, H.: New oscillation theorems for a class of second-order damped nonlinear differential equations. Ukr. Math. J. 63 (2012), 1441-1457. English. Russian original translation from Ukr. Mat. Zh. 63 2011 1263-1278. | DOI | MR | JFM
[33] Wintner, A.: A criterion of oscillatory stability. Q. Appl. Math. 7 (1949), 115-117. | DOI | MR | JFM
[34] Wong, J. S. W.: On Kamenev-type oscillation theorems for second-order differential equations with damping. J. Math. Anal. Appl. 258 (2001), 244-257. | DOI | MR | JFM
[35] Yamaoka, N.: Oscillation criteria for second-order damped nonlinear differential equations with {$p$}-Laplacian. J. Math. Anal. Appl. 325 (2007), 932-948. | DOI | MR | JFM
[36] Zhang, Q., Wang, L.: Oscillatory behavior of solutions for a class of second order nonlinear differential equation with perturbation. Acta Appl. Math. 110 (2010), 885-893. | DOI | MR | JFM
[37] Zheng, W., Sugie, J.: Parameter diagram for global asymptotic stability of damped half-linear oscillators. Monatsh. Math. 179 (2016), 149-160. | DOI | MR | JFM
[38] Zheng, Z.: Note on Wong's paper. J. Math. Anal. Appl. 274 (2002), 466-473. | DOI | MR | JFM
Cité par Sources :