Restricted homological dimensions over local homomorphisms and Cohen-Macaulayness
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 741-754.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We define and study restricted projective, injective and flat dimensions over local homomorphisms. Some known results are generalized. As applications, we show that (almost) Cohen-Macaulay rings can be characterized by restricted homological dimensions over local homomorphisms.
DOI : 10.21136/CMJ.2018.0638-16
Classification : 13D02, 13D05
Keywords: Cohen factorization; restricted homological dimension; Cohen-Macaulay ring
@article{10_21136_CMJ_2018_0638_16,
     author = {Kong, Fangdi and Wu, Dejun},
     title = {Restricted homological dimensions over local homomorphisms and {Cohen-Macaulayness}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {741--754},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2018},
     doi = {10.21136/CMJ.2018.0638-16},
     mrnumber = {3851888},
     zbl = {06986969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0638-16/}
}
TY  - JOUR
AU  - Kong, Fangdi
AU  - Wu, Dejun
TI  - Restricted homological dimensions over local homomorphisms and Cohen-Macaulayness
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 741
EP  - 754
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0638-16/
DO  - 10.21136/CMJ.2018.0638-16
LA  - en
ID  - 10_21136_CMJ_2018_0638_16
ER  - 
%0 Journal Article
%A Kong, Fangdi
%A Wu, Dejun
%T Restricted homological dimensions over local homomorphisms and Cohen-Macaulayness
%J Czechoslovak Mathematical Journal
%D 2018
%P 741-754
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0638-16/
%R 10.21136/CMJ.2018.0638-16
%G en
%F 10_21136_CMJ_2018_0638_16
Kong, Fangdi; Wu, Dejun. Restricted homological dimensions over local homomorphisms and Cohen-Macaulayness. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 741-754. doi : 10.21136/CMJ.2018.0638-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0638-16/

Cité par Sources :