Restricted homological dimensions over local homomorphisms and Cohen-Macaulayness
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 741-754 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We define and study restricted projective, injective and flat dimensions over local homomorphisms. Some known results are generalized. As applications, we show that (almost) Cohen-Macaulay rings can be characterized by restricted homological dimensions over local homomorphisms.
We define and study restricted projective, injective and flat dimensions over local homomorphisms. Some known results are generalized. As applications, we show that (almost) Cohen-Macaulay rings can be characterized by restricted homological dimensions over local homomorphisms.
DOI : 10.21136/CMJ.2018.0638-16
Classification : 13D02, 13D05
Keywords: Cohen factorization; restricted homological dimension; Cohen-Macaulay ring
@article{10_21136_CMJ_2018_0638_16,
     author = {Kong, Fangdi and Wu, Dejun},
     title = {Restricted homological dimensions over local homomorphisms and {Cohen-Macaulayness}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {741--754},
     year = {2018},
     volume = {68},
     number = {3},
     doi = {10.21136/CMJ.2018.0638-16},
     mrnumber = {3851888},
     zbl = {06986969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0638-16/}
}
TY  - JOUR
AU  - Kong, Fangdi
AU  - Wu, Dejun
TI  - Restricted homological dimensions over local homomorphisms and Cohen-Macaulayness
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 741
EP  - 754
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0638-16/
DO  - 10.21136/CMJ.2018.0638-16
LA  - en
ID  - 10_21136_CMJ_2018_0638_16
ER  - 
%0 Journal Article
%A Kong, Fangdi
%A Wu, Dejun
%T Restricted homological dimensions over local homomorphisms and Cohen-Macaulayness
%J Czechoslovak Mathematical Journal
%D 2018
%P 741-754
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0638-16/
%R 10.21136/CMJ.2018.0638-16
%G en
%F 10_21136_CMJ_2018_0638_16
Kong, Fangdi; Wu, Dejun. Restricted homological dimensions over local homomorphisms and Cohen-Macaulayness. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 741-754. doi: 10.21136/CMJ.2018.0638-16

[1] Auslander, M., Bridger, M.: Stable Module Theory. Memoirs of the American Mathematical Society 94, American Mathematical Society, Providence (1969). | DOI | MR | JFM

[2] Avramov, L. L., Foxby, H.-B.: Homological dimensions of unbounded complexes. J. Pure Appl. Algebra 71 (1991), 129-155. | DOI | MR | JFM

[3] Avramov, L. L., Foxby, H.-B., Herzog, B.: Structure of local homomorphisms. J. Algebra 164 (1994), 124-145. | DOI | MR | JFM

[4] Avramov, L. L., Iyengar, S., Miller, C.: Homology over local homomorphisms. Am. J. Math. 128 (2006), 23-90. | DOI | MR | JFM

[5] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1993). | DOI | MR | JFM

[6] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353 (2001), 1839-1883. | DOI | MR | JFM

[7] Christensen, L. W., Foxby, H.-B., Frankild, A.: Restricted homological dimensions andCohen-Macaulayness. J. Algebra 251 (2002), 479-502. | DOI | MR | JFM

[8] Foxby, H.-B., Iyengar, S.: Depth and amplitude for unbounded complexes. Commutative algebra. Interactions with algebraic geometry L. L. Avramov, M. Chardin, M. Morales, C. Polini Contemporary Mathematics 331, American Mathematical Society, Providence (2003), 119-137. | DOI | MR | JFM

[9] Iyengar, S.: Depth for complexes, and intersection theorems. Math. Z. 230 (1999), 545-567. | DOI | MR | JFM

[10] Iyengar, S., Sather-Wagstaff, S.: $G$-dimension over local homomorphisms. Applications to the Frobenius endomorphism. Ill. J. Math. 48 (2004), 241-272. | DOI | MR | JFM

[11] Wu, D.: Gorenstein dimensions over ring homomorphisms. Commun. Algebra 43 (2015), 2005-2028. | DOI | MR | JFM

[12] Wu, D., Liu, Z.: On restricted injective dimensions of complexes. Commun. Algebra 41 (2013), 462-470. | DOI | MR | JFM

Cité par Sources :