On the geometry of some solvable extensions of the Heisenberg group
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 723-740 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we first classify left-invariant generalized Ricci solitons on some solvable extensions of the Heisenberg group in both Riemannian and Lorentzian cases. Then we obtain the exact form of all left-invariant unit time-like vector fields which are spatially harmonic. We also calculate the energy of an arbitrary left-invariant vector field $X$ on these spaces and obtain all vector fields which are critical points for the energy functional restricted to vector fields of the same length. Furthermore, we determine all homogeneous Lorentzian structures and their types on these spaces and give a complete and explicit description of all parallel and totally geodesic hypersurfaces of these spaces. The non-existence of harmonic maps in the non-abelian case is proved and it is shown that the existence of Einstein, Einstein-like metrics and some equations in the Riemannian case can not be extended to their Lorentzian analogues.
In this paper we first classify left-invariant generalized Ricci solitons on some solvable extensions of the Heisenberg group in both Riemannian and Lorentzian cases. Then we obtain the exact form of all left-invariant unit time-like vector fields which are spatially harmonic. We also calculate the energy of an arbitrary left-invariant vector field $X$ on these spaces and obtain all vector fields which are critical points for the energy functional restricted to vector fields of the same length. Furthermore, we determine all homogeneous Lorentzian structures and their types on these spaces and give a complete and explicit description of all parallel and totally geodesic hypersurfaces of these spaces. The non-existence of harmonic maps in the non-abelian case is proved and it is shown that the existence of Einstein, Einstein-like metrics and some equations in the Riemannian case can not be extended to their Lorentzian analogues.
DOI : 10.21136/CMJ.2018.0635-16
Classification : 53C30, 53C43, 53C50
Keywords: generalized Ricci soliton; harmonicity of vector field; homogeneous Lorentzian structure; parallel hypersurfaces
@article{10_21136_CMJ_2018_0635_16,
     author = {Nasehi, Mehri and Aghasi, Mansour},
     title = {On the geometry of some solvable extensions of the {Heisenberg} group},
     journal = {Czechoslovak Mathematical Journal},
     pages = {723--740},
     year = {2018},
     volume = {68},
     number = {3},
     doi = {10.21136/CMJ.2018.0635-16},
     mrnumber = {3851887},
     zbl = {06986968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0635-16/}
}
TY  - JOUR
AU  - Nasehi, Mehri
AU  - Aghasi, Mansour
TI  - On the geometry of some solvable extensions of the Heisenberg group
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 723
EP  - 740
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0635-16/
DO  - 10.21136/CMJ.2018.0635-16
LA  - en
ID  - 10_21136_CMJ_2018_0635_16
ER  - 
%0 Journal Article
%A Nasehi, Mehri
%A Aghasi, Mansour
%T On the geometry of some solvable extensions of the Heisenberg group
%J Czechoslovak Mathematical Journal
%D 2018
%P 723-740
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0635-16/
%R 10.21136/CMJ.2018.0635-16
%G en
%F 10_21136_CMJ_2018_0635_16
Nasehi, Mehri; Aghasi, Mansour. On the geometry of some solvable extensions of the Heisenberg group. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 723-740. doi: 10.21136/CMJ.2018.0635-16

[1] Aghasi, M., Nasehi, M.: On the geometrical properties of solvable Lie groups. Adv. Geom. 15 (2015), 507-517. | DOI | MR | JFM

[2] Batat, W., Gadea, P. M., Oubiña, J. A.: Homogeneous Riemannian structures on some solvable extensions of the Heisenberg group. Acta Math. Hung. 138 (2013), 341-364. | DOI | MR | JFM

[3] Batat, W., Rahmani, S.: Isometries, geodesics and Jacobi fields of Lorentzian Heisenberg group. Mediterr. J. Math. 8 (2011), 411-430. | DOI | MR | JFM

[4] Bouckaert, R. R.: A probabilistic line breaking algorithm. Advances in Artificial Intelligence. Proc. 16th Australian Conf. on AI, Perth, 2003 Lecture Notes in Comput. Sci. 2903. Lecture Notes in Artificial Intelligence. Springer, Berlin (2003), 390-401 T. D. Gedeon et al. | DOI | MR | JFM

[5] Calvaruso, G.: Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups. J. Geom. Phys. 61 (2011), 498-515. | DOI | MR | JFM

[6] Calvaruso, G.: Harmonicity of vector fields on four-dimensional generalized symmetric spaces. Cent. Eur. J. Math. 10 (2012), 411-425. | DOI | MR | JFM

[7] Calvaruso, G.: Three-dimensional homogeneous generalized Ricci solitons. Avaible at arXiv:1503.07767v2 [math.DG]. | MR

[8] Calvaruso, G., López, M. Castrillón: Cyclic Lorentzian Lie groups. Geom. Dedicata 181 (2016), 119-136. | DOI | MR | JFM

[9] Leo, B. De, Veken, J. Van Der: Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces. Geom. Dedicata 159 (2012), 373-387. | DOI | MR | JFM

[10] Gadea, P. M., González-Dávila, J. C., Oubiña, J. A.: Cyclic metric Lie groups. Monatsh. Math. 176 (2015), 219-239. | DOI | MR | JFM

[11] Gadea, P. M., Oubiña, J. A.: Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures. Houston J. Math. 18 (1992), 449-465. | MR | JFM

[12] Gil-Medrano, O., Hurtado, A.: Spacelike energy of timelike unit vector fields on a Lorentzian manifold. J. Geom. Phys. 51 (2004), 82-100. | DOI | MR | JFM

[13] Gray, A.: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978), 259-280. | DOI | MR | JFM

[14] Nasehi, M.: Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds. Czech. Math. J. 66 (2016), 547-559. | DOI | MR | JFM

[15] Nasehi, M., Aghasi, M.: On the geometrical properties of hypercomplex four-dimensional Lie groups. Georgian Math. J. 25, (2018), 1-10. | DOI | MR

[16] Nurowski, P., Randall, M.: Generalized Ricci solitons. J. Geom. Anal. 26 (2016), 1280-1345. | DOI | MR | JFM

[17] Rahmani, S.: Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois. J. Geom. Phys. 9 (1992), 295-302 French. | DOI | MR | JFM

[18] Rahmani, N., Rahmani, S.: Lorentzian geometry of the Heisenberg group. Geom. Dedicata 118 (2006), 133-140. | DOI | MR | JFM

[19] Shin, H., Kim, Y. W., Koh, S.-E., Lee, H. Y., Yang, S.-D.: Ruled minimal surfaces in the three-dimensional Heisenberg group. Pac. J. Math. 261 (2013), 477-496. | DOI | MR | JFM

Cité par Sources :