Keywords: generalized Ricci soliton; harmonicity of vector field; homogeneous Lorentzian structure; parallel hypersurfaces
@article{10_21136_CMJ_2018_0635_16,
author = {Nasehi, Mehri and Aghasi, Mansour},
title = {On the geometry of some solvable extensions of the {Heisenberg} group},
journal = {Czechoslovak Mathematical Journal},
pages = {723--740},
year = {2018},
volume = {68},
number = {3},
doi = {10.21136/CMJ.2018.0635-16},
mrnumber = {3851887},
zbl = {06986968},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0635-16/}
}
TY - JOUR AU - Nasehi, Mehri AU - Aghasi, Mansour TI - On the geometry of some solvable extensions of the Heisenberg group JO - Czechoslovak Mathematical Journal PY - 2018 SP - 723 EP - 740 VL - 68 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0635-16/ DO - 10.21136/CMJ.2018.0635-16 LA - en ID - 10_21136_CMJ_2018_0635_16 ER -
%0 Journal Article %A Nasehi, Mehri %A Aghasi, Mansour %T On the geometry of some solvable extensions of the Heisenberg group %J Czechoslovak Mathematical Journal %D 2018 %P 723-740 %V 68 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0635-16/ %R 10.21136/CMJ.2018.0635-16 %G en %F 10_21136_CMJ_2018_0635_16
Nasehi, Mehri; Aghasi, Mansour. On the geometry of some solvable extensions of the Heisenberg group. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 723-740. doi: 10.21136/CMJ.2018.0635-16
[1] Aghasi, M., Nasehi, M.: On the geometrical properties of solvable Lie groups. Adv. Geom. 15 (2015), 507-517. | DOI | MR | JFM
[2] Batat, W., Gadea, P. M., Oubiña, J. A.: Homogeneous Riemannian structures on some solvable extensions of the Heisenberg group. Acta Math. Hung. 138 (2013), 341-364. | DOI | MR | JFM
[3] Batat, W., Rahmani, S.: Isometries, geodesics and Jacobi fields of Lorentzian Heisenberg group. Mediterr. J. Math. 8 (2011), 411-430. | DOI | MR | JFM
[4] Bouckaert, R. R.: A probabilistic line breaking algorithm. Advances in Artificial Intelligence. Proc. 16th Australian Conf. on AI, Perth, 2003 Lecture Notes in Comput. Sci. 2903. Lecture Notes in Artificial Intelligence. Springer, Berlin (2003), 390-401 T. D. Gedeon et al. | DOI | MR | JFM
[5] Calvaruso, G.: Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups. J. Geom. Phys. 61 (2011), 498-515. | DOI | MR | JFM
[6] Calvaruso, G.: Harmonicity of vector fields on four-dimensional generalized symmetric spaces. Cent. Eur. J. Math. 10 (2012), 411-425. | DOI | MR | JFM
[7] Calvaruso, G.: Three-dimensional homogeneous generalized Ricci solitons. Avaible at arXiv:1503.07767v2 [math.DG]. | MR
[8] Calvaruso, G., López, M. Castrillón: Cyclic Lorentzian Lie groups. Geom. Dedicata 181 (2016), 119-136. | DOI | MR | JFM
[9] Leo, B. De, Veken, J. Van Der: Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces. Geom. Dedicata 159 (2012), 373-387. | DOI | MR | JFM
[10] Gadea, P. M., González-Dávila, J. C., Oubiña, J. A.: Cyclic metric Lie groups. Monatsh. Math. 176 (2015), 219-239. | DOI | MR | JFM
[11] Gadea, P. M., Oubiña, J. A.: Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures. Houston J. Math. 18 (1992), 449-465. | MR | JFM
[12] Gil-Medrano, O., Hurtado, A.: Spacelike energy of timelike unit vector fields on a Lorentzian manifold. J. Geom. Phys. 51 (2004), 82-100. | DOI | MR | JFM
[13] Gray, A.: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978), 259-280. | DOI | MR | JFM
[14] Nasehi, M.: Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds. Czech. Math. J. 66 (2016), 547-559. | DOI | MR | JFM
[15] Nasehi, M., Aghasi, M.: On the geometrical properties of hypercomplex four-dimensional Lie groups. Georgian Math. J. 25, (2018), 1-10. | DOI | MR
[16] Nurowski, P., Randall, M.: Generalized Ricci solitons. J. Geom. Anal. 26 (2016), 1280-1345. | DOI | MR | JFM
[17] Rahmani, S.: Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois. J. Geom. Phys. 9 (1992), 295-302 French. | DOI | MR | JFM
[18] Rahmani, N., Rahmani, S.: Lorentzian geometry of the Heisenberg group. Geom. Dedicata 118 (2006), 133-140. | DOI | MR | JFM
[19] Shin, H., Kim, Y. W., Koh, S.-E., Lee, H. Y., Yang, S.-D.: Ruled minimal surfaces in the three-dimensional Heisenberg group. Pac. J. Math. 261 (2013), 477-496. | DOI | MR | JFM
Cité par Sources :