When a line graph associated to annihilating-ideal graph of a lattice is planar or projective
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 19-34 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(L,\wedge ,\vee )$ be a finite lattice with a least element 0. $\mathbb {A} G(L)$ is an annihilating-ideal graph of $L$ in which the vertex set is the set of all nontrivial ideals of $L$, and two distinct vertices $I$ and $J$ are adjacent if and only if $I \wedge J=0$. We completely characterize all finite lattices $L$ whose line graph associated to an annihilating-ideal graph, denoted by $\mathfrak {L}(\mathbb {A} G(L))$, is a planar or projective graph.
Let $(L,\wedge ,\vee )$ be a finite lattice with a least element 0. $\mathbb {A} G(L)$ is an annihilating-ideal graph of $L$ in which the vertex set is the set of all nontrivial ideals of $L$, and two distinct vertices $I$ and $J$ are adjacent if and only if $I \wedge J=0$. We completely characterize all finite lattices $L$ whose line graph associated to an annihilating-ideal graph, denoted by $\mathfrak {L}(\mathbb {A} G(L))$, is a planar or projective graph.
DOI : 10.21136/CMJ.2018.0635-15
Classification : 05C10, 05C75, 06B10
Keywords: annihilating-ideal graph; lattice; line graph; planar graph; projective graph
@article{10_21136_CMJ_2018_0635_15,
     author = {Parsapour, Atossa and Ahmad Javaheri, Khadijeh},
     title = {When a line graph associated to annihilating-ideal graph of a lattice is planar or projective},
     journal = {Czechoslovak Mathematical Journal},
     pages = {19--34},
     year = {2018},
     volume = {68},
     number = {1},
     doi = {10.21136/CMJ.2018.0635-15},
     mrnumber = {3783583},
     zbl = {06861565},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0635-15/}
}
TY  - JOUR
AU  - Parsapour, Atossa
AU  - Ahmad Javaheri, Khadijeh
TI  - When a line graph associated to annihilating-ideal graph of a lattice is planar or projective
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 19
EP  - 34
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0635-15/
DO  - 10.21136/CMJ.2018.0635-15
LA  - en
ID  - 10_21136_CMJ_2018_0635_15
ER  - 
%0 Journal Article
%A Parsapour, Atossa
%A Ahmad Javaheri, Khadijeh
%T When a line graph associated to annihilating-ideal graph of a lattice is planar or projective
%J Czechoslovak Mathematical Journal
%D 2018
%P 19-34
%V 68
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0635-15/
%R 10.21136/CMJ.2018.0635-15
%G en
%F 10_21136_CMJ_2018_0635_15
Parsapour, Atossa; Ahmad Javaheri, Khadijeh. When a line graph associated to annihilating-ideal graph of a lattice is planar or projective. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 19-34. doi: 10.21136/CMJ.2018.0635-15

[1] Afkhami, M., Bahrami, S., Khashyarmanesh, K., Shahsavar, F.: The annihilating-ideal graph of a lattice. Georgian Math. J. 23 (2016), 1-7. | DOI | MR | JFM

[2] Anderson, D. F., Axtell, M. C., Stickles, J. A.: Zero-divisor graphs in commutative rings. Commutative Algebra, Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 23-45. | DOI | MR | JFM

[3] Archdeacon, D.: A Kuratowski theorem for the projective plane. J. Graph Theory 5 (1981), 243-246. | DOI | MR | JFM

[4] Beck, I.: Coloring of commutative rings. J. Algebra 116 (1988), 208-226. | DOI | MR | JFM

[5] Behboodi, M., Rakeei, Z.: The annihilating-ideal graph of commutative rings I. J. Algebra Appl. 10 (2011), 727-739. | DOI | MR | JFM

[6] Behboodi, M., Rakeei, Z.: The annihilating-ideal graph of commutative rings II. J. Algebra Appl. 10 (2011), 741-753. | DOI | MR | JFM

[7] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications. American Elsevier Publishing, New York (1976). | DOI | MR | JFM

[8] Bouchet, A.: Orientable and nonorientable genus of the complete bipartite graph. J. Comb. Theory, Ser. B 24 (1978), 24-33. | DOI | MR | JFM

[9] Chiang-Hsieh, H.-J., Lee, P.-F., Wang, H.-J.: The embedding of line graphs associated to the zero-divisor graphs of commutative rings. Isr. J. Math. 180 (2010), 193-222. | DOI | MR | JFM

[10] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002). | DOI | MR | JFM

[11] Glover, H. H., Huneke, J. P., Wang, C. S.: 103 graphs that are irreducible for the projective plane. J. Comb. Theory, Ser. B 27 (1979), 332-370. | DOI | MR | JFM

[12] Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics 207, Springer, New York (2001). | DOI | MR | JFM

[13] Khashyarmanesh, K., Khorsandi, M. R.: Projective total graphs of commutative rings. Rocky Mt. J. Math. 43 (2013), 1207-1213. | DOI | MR | JFM

[14] Massey, W. S.: Algebraic Topology: An Introduction. Graduate Texts in Mathematics 56, Springer, New York (1977). | MR | JFM

[15] Nation, J. B.: Notes on Lattice Theory. (1991)--2009. Available at http://www.math.hawaii.edu/ {jb/books.html}.

[16] Ringel, G.: Map Color Theorem. Die Grundlehren der mathematischen Wissenschaften 209, Springer, Berlin (1974). | DOI | MR | JFM

[17] Roth, J., Myrvold, W.: Simpler projective plane embedding. Ars Comb. 75 (2005), 135-155. | MR | JFM

[18] Sedláček, J.: Some properties of interchange graphs. Theory Graphs Appl Proc. Symp. Smolenice, 1963, Czechoslovak Acad. Sci., Praha (1964), 145-150. | MR | JFM

[19] White, A. T.: Graphs, Groups and Surfaces. North-Holland Mathematics Studies 8, North-Holland Publishing, Amsterdam-London; American Elsevier Publishing, New York (1973). | MR | JFM

Cité par Sources :