Strict Mittag-Leffler conditions and locally split morphisms
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 677-686 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we prove that any pure submodule of a strict Mittag-Leffler module is a locally split submodule. As applications, we discuss some relations between locally split monomorphisms and locally split epimorphisms and give a partial answer to the open problem whether Gorenstein projective modules are Ding projective.
In this paper, we prove that any pure submodule of a strict Mittag-Leffler module is a locally split submodule. As applications, we discuss some relations between locally split monomorphisms and locally split epimorphisms and give a partial answer to the open problem whether Gorenstein projective modules are Ding projective.
DOI : 10.21136/CMJ.2018.0621-16
Classification : 13D02, 13D07, 13E05, 16D10, 16D80, 16D90
Keywords: strict Mittag-Leffler condition; locally split morphism; Gorenstein projective module; Ding projective module
@article{10_21136_CMJ_2018_0621_16,
     author = {Yang, Yanjiong and Yan, Xiaoguang},
     title = {Strict {Mittag-Leffler} conditions and locally split morphisms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {677--686},
     year = {2018},
     volume = {68},
     number = {3},
     doi = {10.21136/CMJ.2018.0621-16},
     mrnumber = {3851884},
     zbl = {06986965},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0621-16/}
}
TY  - JOUR
AU  - Yang, Yanjiong
AU  - Yan, Xiaoguang
TI  - Strict Mittag-Leffler conditions and locally split morphisms
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 677
EP  - 686
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0621-16/
DO  - 10.21136/CMJ.2018.0621-16
LA  - en
ID  - 10_21136_CMJ_2018_0621_16
ER  - 
%0 Journal Article
%A Yang, Yanjiong
%A Yan, Xiaoguang
%T Strict Mittag-Leffler conditions and locally split morphisms
%J Czechoslovak Mathematical Journal
%D 2018
%P 677-686
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0621-16/
%R 10.21136/CMJ.2018.0621-16
%G en
%F 10_21136_CMJ_2018_0621_16
Yang, Yanjiong; Yan, Xiaoguang. Strict Mittag-Leffler conditions and locally split morphisms. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 677-686. doi: 10.21136/CMJ.2018.0621-16

[1] Hügel, L. Angeleri, Bazzoni, S., Herbera, D.: A solution to the Baer splitting problem. Trans. Am. Math. Soc. 360 (2008), 2409-2421. | DOI | MR | JFM

[2] Hügel, L. Angeleri, Herbera, D.: Mittag-Leffler conditions on modules. Indiana Univ. Math. J. 57 (2008), 2459-2517. | DOI | MR | JFM

[3] Azumaya, G.: Locally pure-projective modules. Azumaya Algebras, Actions, and Modules Proc. Conf., Bloomington 1990, Contemp. Math. 124, Am. Math. Soc., Providence (1992), 17-22. | DOI | MR | JFM

[4] Bazzoni, S., Herbera, D.: One dimensional tilting modules are of finite type. Algebr. Represent. Theory 11 (2008), 43-61. | DOI | MR | JFM

[5] Bazzoni, S., Šťovíček, J.: All tilting modules are of finite type. Proc. Am. Math. Soc. 135 (2007), 3771-3781. | DOI | MR | JFM

[6] Bennis, D., Mahdou, N.: Strongly Gorenstein projective, injective, and flat modules. J. Pure Appl. Algebra 210 (2007), 437-445. | DOI | MR | JFM

[7] Chase, S. U.: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457-473. | DOI | MR | JFM

[8] Ding, N., Li, Y., Mao, L.: Strongly Gorenstein flat modules. J. Aust. Math. Soc. 86 (2009), 323-338. | DOI | MR | JFM

[9] Emmanouil, I.: On certain cohomological invariants of groups. Adv. Math. 225 (2010), 3446-3462. | DOI | MR | JFM

[10] Emmanouil, I., Talelli, O.: On the flat length of injective modules. J. Lond. Math. Soc., II. Ser. 84 (2011), 408-432. | DOI | MR | JFM

[11] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). | DOI | MR | JFM

[12] Gillespie, J.: Model structures on modules over Ding-Chen rings. Homology Homotopy Appl. 12 (2010), 61-73. | DOI | MR | JFM

[13] Grothendieck, A.: Techniques de construction et théorèmes d'existence en géométrie algébrique. III. Préschemas quotients. Sém. Bourbaki, Vol. 6, 1960-1961 Soc. Math. France, Paris (1995), French 99-118. | MR | JFM

[14] Herbera, D., Trlifaj, J.: Almost free modules and Mittag-Leffler conditions. Adv. Math. 229 (2012), 3436-3467. | DOI | MR | JFM

[15] Raynaud, M., Gruson, L.: Critères de platitude et de projectivité. Techniques de ``platification'' d'un module. Invent. Math. 13 (1971), 1-89 French. | DOI | MR | JFM

[16] Zimmermann, W.: On locally pure-injective modules. J. Pure Appl. Algebra 166 (2002), 337-357. | DOI | MR | JFM

Cité par Sources :