Strict Mittag-Leffler conditions and locally split morphisms
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 677-686.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we prove that any pure submodule of a strict Mittag-Leffler module is a locally split submodule. As applications, we discuss some relations between locally split monomorphisms and locally split epimorphisms and give a partial answer to the open problem whether Gorenstein projective modules are Ding projective.
DOI : 10.21136/CMJ.2018.0621-16
Classification : 13D02, 13D07, 13E05, 16D10, 16D80, 16D90
Keywords: strict Mittag-Leffler condition; locally split morphism; Gorenstein projective module; Ding projective module
@article{10_21136_CMJ_2018_0621_16,
     author = {Yang, Yanjiong and Yan, Xiaoguang},
     title = {Strict {Mittag-Leffler} conditions and locally split morphisms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {677--686},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2018},
     doi = {10.21136/CMJ.2018.0621-16},
     mrnumber = {3851884},
     zbl = {06986965},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0621-16/}
}
TY  - JOUR
AU  - Yang, Yanjiong
AU  - Yan, Xiaoguang
TI  - Strict Mittag-Leffler conditions and locally split morphisms
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 677
EP  - 686
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0621-16/
DO  - 10.21136/CMJ.2018.0621-16
LA  - en
ID  - 10_21136_CMJ_2018_0621_16
ER  - 
%0 Journal Article
%A Yang, Yanjiong
%A Yan, Xiaoguang
%T Strict Mittag-Leffler conditions and locally split morphisms
%J Czechoslovak Mathematical Journal
%D 2018
%P 677-686
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0621-16/
%R 10.21136/CMJ.2018.0621-16
%G en
%F 10_21136_CMJ_2018_0621_16
Yang, Yanjiong; Yan, Xiaoguang. Strict Mittag-Leffler conditions and locally split morphisms. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 677-686. doi : 10.21136/CMJ.2018.0621-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0621-16/

Cité par Sources :