Local superderivations on Lie superalgebra $\mathfrak {q}(n)$
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 661-675
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\mathfrak {q}(n)$ be a simple strange Lie superalgebra over the complex field $\mathbb {C}$. In a paper by A. Ayupov, K. Kudaybergenov (2016), the authors studied the local derivations on semi-simple Lie algebras over $\mathbb {C}$ and showed the difference between the properties of local derivations on semi-simple and nilpotent Lie algebras. We know that Lie superalgebras are a generalization of Lie algebras and the properties of some Lie superalgebras are similar to those of semi-simple Lie algebras, but $\mathfrak {p}(n)$ is an exception. In this paper, we introduce the definition of the local superderivation on $\mathfrak {q}(n)$, give the structures and properties of the local superderivations of $\mathfrak {q}(n)$, and prove that every local superderivation on $\mathfrak {q}(n)$, $n>3$, is a superderivation.
Let $\mathfrak {q}(n)$ be a simple strange Lie superalgebra over the complex field $\mathbb {C}$. In a paper by A. Ayupov, K. Kudaybergenov (2016), the authors studied the local derivations on semi-simple Lie algebras over $\mathbb {C}$ and showed the difference between the properties of local derivations on semi-simple and nilpotent Lie algebras. We know that Lie superalgebras are a generalization of Lie algebras and the properties of some Lie superalgebras are similar to those of semi-simple Lie algebras, but $\mathfrak {p}(n)$ is an exception. In this paper, we introduce the definition of the local superderivation on $\mathfrak {q}(n)$, give the structures and properties of the local superderivations of $\mathfrak {q}(n)$, and prove that every local superderivation on $\mathfrak {q}(n)$, $n>3$, is a superderivation.
DOI :
10.21136/CMJ.2018.0597-16
Classification :
16W55, 17B20, 17B40
Keywords: simple Lie superalgebra; superderivation; local superderivation
Keywords: simple Lie superalgebra; superderivation; local superderivation
@article{10_21136_CMJ_2018_0597_16,
author = {Chen, Haixian and Wang, Ying},
title = {Local superderivations on {Lie} superalgebra $\mathfrak {q}(n)$},
journal = {Czechoslovak Mathematical Journal},
pages = {661--675},
year = {2018},
volume = {68},
number = {3},
doi = {10.21136/CMJ.2018.0597-16},
mrnumber = {3851883},
zbl = {06986964},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0597-16/}
}
TY - JOUR
AU - Chen, Haixian
AU - Wang, Ying
TI - Local superderivations on Lie superalgebra $\mathfrak {q}(n)$
JO - Czechoslovak Mathematical Journal
PY - 2018
SP - 661
EP - 675
VL - 68
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0597-16/
DO - 10.21136/CMJ.2018.0597-16
LA - en
ID - 10_21136_CMJ_2018_0597_16
ER -
%0 Journal Article
%A Chen, Haixian
%A Wang, Ying
%T Local superderivations on Lie superalgebra $\mathfrak {q}(n)$
%J Czechoslovak Mathematical Journal
%D 2018
%P 661-675
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0597-16/
%R 10.21136/CMJ.2018.0597-16
%G en
%F 10_21136_CMJ_2018_0597_16
Chen, Haixian; Wang, Ying. Local superderivations on Lie superalgebra $\mathfrak {q}(n)$. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 661-675. doi: 10.21136/CMJ.2018.0597-16
Cité par Sources :