Keywords: invariant metric; geodesically equivalent metric; affinely equivalent metric
@article{10_21136_CMJ_2018_0557_17,
author = {Bokan, Neda and \v{S}ukilovi\'c, Tijana and Vukmirovi\'c, Srdjan},
title = {Geodesically equivalent metrics on homogenous spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {945--954},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2018.0557-17},
mrnumber = {4039611},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0557-17/}
}
TY - JOUR AU - Bokan, Neda AU - Šukilović, Tijana AU - Vukmirović, Srdjan TI - Geodesically equivalent metrics on homogenous spaces JO - Czechoslovak Mathematical Journal PY - 2019 SP - 945 EP - 954 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0557-17/ DO - 10.21136/CMJ.2018.0557-17 LA - en ID - 10_21136_CMJ_2018_0557_17 ER -
%0 Journal Article %A Bokan, Neda %A Šukilović, Tijana %A Vukmirović, Srdjan %T Geodesically equivalent metrics on homogenous spaces %J Czechoslovak Mathematical Journal %D 2019 %P 945-954 %V 69 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0557-17/ %R 10.21136/CMJ.2018.0557-17 %G en %F 10_21136_CMJ_2018_0557_17
Bokan, Neda; Šukilović, Tijana; Vukmirović, Srdjan. Geodesically equivalent metrics on homogenous spaces. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 945-954. doi: 10.21136/CMJ.2018.0557-17
[1] Bokan, N., Šukilović, T., Vukmirović, S.: Lorentz geometry of 4-dimensional nilpotent Lie groups. Geom. Dedicata 177 (2015), 83-102. | DOI | MR | JFM
[2] Bolsinov, A. V., Kiosak, V., Matveev, V. S.: A Fubini theorem for pseudo-Riemannian geodesically equivalent metrics. J. Lond. Math. Soc., II. Ser. 80 (2009), 341-356. | DOI | MR | JFM
[3] Eisenhart, L. P.: Symmetric tensors of the second order whose first covariant derivatives are zero. Trans. Amer. Math. Soc. 25 (1923), 297-306 \99999JFM99999 49.0539.01. | DOI | MR
[4] Hall, G. S., Lonie, D. P.: Holonomy groups and spacetimes. Classical Quantum Gravity 17 (2000), 1369-1382. | DOI | MR | JFM
[5] Hall, G. S., Lonie, D. P.: Projective structure and holonomy in four-dimensional Lorentz manifolds. J. Geom. Phys. 61 (2011), 381-399. | DOI | MR | JFM
[6] Kiosak, V., Matveev, V. S.: Complete Einstein metrics are geodesically rigid. Commun. Math. Phys. 289 (2009), 383-400. | DOI | MR | JFM
[7] Kiosak, V., Matveev, V. S.: Proof of the projective Lichnerowicz conjecture for pseudo-Riemannian metrics with degree of mobility greater than two. Commun. Math. Phys. 297 (2010), 401-426. | DOI | MR | JFM
[8] Levi-Civita, T.: Sulle trasformazioni dello equazioni dinamiche. Annali di Mat. 24 Italian (1896), 255-300 \99999JFM99999 27.0603.04. | DOI | MR
[9] Sinyukov, N. S.: On geodesic mappings of Riemannian spaces onto symmetric Riemannian spaces. Dokl. Akad. Nauk SSSR, n. Ser. 98 (1954), 21-23 Russian. | MR | JFM
[10] Topalov, P.: Integrability criterion of geodesical equivalence. Hierarchies. Acta Appl. Math. 59 (1999), 271-298. | DOI | MR | JFM
[11] Wang, Z., Hall, G.: Projective structure in 4-dimensional manifolds with metric signature $(+,+,-,-)$. J. Geom. Phys. 66 (2013), 37-49. | DOI | MR | JFM
Cité par Sources :