Geodesically equivalent metrics on homogenous spaces
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 945-954
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Two metrics on a manifold are geodesically equivalent if the sets of their unparameterized geodesics coincide. We show that if two $G$-invariant metrics of arbitrary signature on homogenous space $G/H$ are geodesically equivalent, they are affinely equivalent, i.e. they have the same Levi-Civita connection. We also prove that the existence of nonproportional, geodesically equivalent, $G$-invariant metrics on homogenous space $G/H$ implies that their holonomy algebra cannot be full. We give an algorithm for finding all left invariant metrics geodesically equivalent to a given left invariant metric on a Lie group. Using that algorithm we prove that no two left invariant metrics of any signature on sphere $S^3$ are geodesically equivalent. However, we present examples of Lie groups that admit geodesically equivalent, nonproportional, left-invariant metrics.
Two metrics on a manifold are geodesically equivalent if the sets of their unparameterized geodesics coincide. We show that if two $G$-invariant metrics of arbitrary signature on homogenous space $G/H$ are geodesically equivalent, they are affinely equivalent, i.e. they have the same Levi-Civita connection. We also prove that the existence of nonproportional, geodesically equivalent, $G$-invariant metrics on homogenous space $G/H$ implies that their holonomy algebra cannot be full. We give an algorithm for finding all left invariant metrics geodesically equivalent to a given left invariant metric on a Lie group. Using that algorithm we prove that no two left invariant metrics of any signature on sphere $S^3$ are geodesically equivalent. However, we present examples of Lie groups that admit geodesically equivalent, nonproportional, left-invariant metrics.
DOI :
10.21136/CMJ.2018.0557-17
Classification :
22E15, 53C22, 53C30
Keywords: invariant metric; geodesically equivalent metric; affinely equivalent metric
Keywords: invariant metric; geodesically equivalent metric; affinely equivalent metric
@article{10_21136_CMJ_2018_0557_17,
author = {Bokan, Neda and \v{S}ukilovi\'c, Tijana and Vukmirovi\'c, Srdjan},
title = {Geodesically equivalent metrics on homogenous spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {945--954},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2018.0557-17},
mrnumber = {4039611},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0557-17/}
}
TY - JOUR AU - Bokan, Neda AU - Šukilović, Tijana AU - Vukmirović, Srdjan TI - Geodesically equivalent metrics on homogenous spaces JO - Czechoslovak Mathematical Journal PY - 2019 SP - 945 EP - 954 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0557-17/ DO - 10.21136/CMJ.2018.0557-17 LA - en ID - 10_21136_CMJ_2018_0557_17 ER -
%0 Journal Article %A Bokan, Neda %A Šukilović, Tijana %A Vukmirović, Srdjan %T Geodesically equivalent metrics on homogenous spaces %J Czechoslovak Mathematical Journal %D 2019 %P 945-954 %V 69 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0557-17/ %R 10.21136/CMJ.2018.0557-17 %G en %F 10_21136_CMJ_2018_0557_17
Bokan, Neda; Šukilović, Tijana; Vukmirović, Srdjan. Geodesically equivalent metrics on homogenous spaces. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 945-954. doi: 10.21136/CMJ.2018.0557-17
Cité par Sources :