Geodesically equivalent metrics on homogenous spaces
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 945-954.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Two metrics on a manifold are geodesically equivalent if the sets of their unparameterized geodesics coincide. We show that if two $G$-invariant metrics of arbitrary signature on homogenous space $G/H$ are geodesically equivalent, they are affinely equivalent, i.e. they have the same Levi-Civita connection. We also prove that the existence of nonproportional, geodesically equivalent, $G$-invariant metrics on homogenous space $G/H$ implies that their holonomy algebra cannot be full. We give an algorithm for finding all left invariant metrics geodesically equivalent to a given left invariant metric on a Lie group. Using that algorithm we prove that no two left invariant metrics of any signature on sphere $S^3$ are geodesically equivalent. However, we present examples of Lie groups that admit geodesically equivalent, nonproportional, left-invariant metrics.
DOI : 10.21136/CMJ.2018.0557-17
Classification : 22E15, 53C22, 53C30
Keywords: invariant metric; geodesically equivalent metric; affinely equivalent metric
@article{10_21136_CMJ_2018_0557_17,
     author = {Bokan, Neda and \v{S}ukilovi\'c, Tijana and Vukmirovi\'c, Srdjan},
     title = {Geodesically equivalent metrics on homogenous spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {945--954},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2019},
     doi = {10.21136/CMJ.2018.0557-17},
     mrnumber = {4039611},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0557-17/}
}
TY  - JOUR
AU  - Bokan, Neda
AU  - Šukilović, Tijana
AU  - Vukmirović, Srdjan
TI  - Geodesically equivalent metrics on homogenous spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 945
EP  - 954
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0557-17/
DO  - 10.21136/CMJ.2018.0557-17
LA  - en
ID  - 10_21136_CMJ_2018_0557_17
ER  - 
%0 Journal Article
%A Bokan, Neda
%A Šukilović, Tijana
%A Vukmirović, Srdjan
%T Geodesically equivalent metrics on homogenous spaces
%J Czechoslovak Mathematical Journal
%D 2019
%P 945-954
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0557-17/
%R 10.21136/CMJ.2018.0557-17
%G en
%F 10_21136_CMJ_2018_0557_17
Bokan, Neda; Šukilović, Tijana; Vukmirović, Srdjan. Geodesically equivalent metrics on homogenous spaces. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 945-954. doi : 10.21136/CMJ.2018.0557-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0557-17/

Cité par Sources :