Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 559-576 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that if $\alpha >1$, then the logarithmically weighted Bergman space $A_{\log ^{\alpha }}^2$ is mapped by the Libera operator $\mathcal {L}$ into the space $A_{\log ^{\alpha -1}}^2$, while if $\alpha >2$ and $0\varepsilon \leq \alpha -2$, then the Hilbert matrix operator $H$ maps $A_{\log ^\alpha }^2$ into $A_{\log ^{\alpha -2-\varepsilon }}^2$.\newline We show that the Libera operator $\mathcal {L}$ maps the logarithmically weighted Bloch space $\mathcal {B}_{\log ^{\alpha }}$, $\alpha \in \mathbb {R}$, into itself, while $H$ maps $\mathcal {B}_{\log ^{\alpha }}$ into $\mathcal {B}_{\log ^{\alpha +1}}$.\newline In Pavlović's paper (2016) it is shown that $\mathcal {L}$ maps the logarithmically weighted Hardy-Bloch space $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha >0$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$. We show that this result is sharp. We also show that $H$ maps $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha \geq {0}$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$ and that this result is sharp also.
We show that if $\alpha >1$, then the logarithmically weighted Bergman space $A_{\log ^{\alpha }}^2$ is mapped by the Libera operator $\mathcal {L}$ into the space $A_{\log ^{\alpha -1}}^2$, while if $\alpha >2$ and $0\varepsilon \leq \alpha -2$, then the Hilbert matrix operator $H$ maps $A_{\log ^\alpha }^2$ into $A_{\log ^{\alpha -2-\varepsilon }}^2$.\newline We show that the Libera operator $\mathcal {L}$ maps the logarithmically weighted Bloch space $\mathcal {B}_{\log ^{\alpha }}$, $\alpha \in \mathbb {R}$, into itself, while $H$ maps $\mathcal {B}_{\log ^{\alpha }}$ into $\mathcal {B}_{\log ^{\alpha +1}}$.\newline In Pavlović's paper (2016) it is shown that $\mathcal {L}$ maps the logarithmically weighted Hardy-Bloch space $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha >0$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$. We show that this result is sharp. We also show that $H$ maps $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha \geq {0}$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$ and that this result is sharp also.
DOI : 10.21136/CMJ.2018.0555-16
Classification : 30H25, 47B38, 47G10
Keywords: Libera operator; Hilbert matrix operator; Hardy space; Bergman space; Bloch space; Hardy-Bloch space
@article{10_21136_CMJ_2018_0555_16,
     author = {Karapetrovi\'c, Boban},
     title = {Libera and {Hilbert} matrix operator on logarithmically weighted {Bergman,} {Bloch} and {Hardy-Bloch} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {559--576},
     year = {2018},
     volume = {68},
     number = {2},
     doi = {10.21136/CMJ.2018.0555-16},
     mrnumber = {3819191},
     zbl = {06890390},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0555-16/}
}
TY  - JOUR
AU  - Karapetrović, Boban
TI  - Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 559
EP  - 576
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0555-16/
DO  - 10.21136/CMJ.2018.0555-16
LA  - en
ID  - 10_21136_CMJ_2018_0555_16
ER  - 
%0 Journal Article
%A Karapetrović, Boban
%T Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces
%J Czechoslovak Mathematical Journal
%D 2018
%P 559-576
%V 68
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0555-16/
%R 10.21136/CMJ.2018.0555-16
%G en
%F 10_21136_CMJ_2018_0555_16
Karapetrović, Boban. Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 559-576. doi: 10.21136/CMJ.2018.0555-16

[1] Jevtić, M., Karapetrović, B.: Hilbert matrix operator on Besov spaces. Publ. Math. 90 (2017), 359-371. | DOI | MR

[2] Jevtić, M., Karapetrović, B.: Libera operator on mixed norm spaces $H_{\nu}^{p,q,\alpha}$ when $0. Filomat 31 (2017), 4641-4650. DOI 10.2298/FIL1714641J | MR 3730385

[3] Jevtić, M., Vukotić, D., Arsenović, M.: Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces. RSME Springer Series 2, Springer, Cham (2016). | DOI | MR | JFM

[4] Łanucha, B., Nowak, M., Pavlović, M.: Hilbert matrix operator on spaces of analytic functions. Ann. Acad. Sci. Fenn., Math. 37 (2012), 161-174. | DOI | MR | JFM

[5] Mateljević, M., Pavlović, M.: $L^p$-behaviour of the integral means of analytic functions. Stud. Math. 77 (1984), 219-237. | DOI | MR | JFM

[6] Pavlović, M.: Definition and properties of the libera operator on mixed norm spaces. The Scientific World Journal 2014 (2014), Article ID 590656, 15 pages. | DOI

[7] Pavlović, M.: Function Classes on the Unit Disc. An introduction. De Gruyter Studies in Mathematics 52, De Gruyter, Berlin (2014). | DOI | MR | JFM

[8] Pavlović, M.: Logarithmic Bloch space and its predual. Publ. Inst. Math. (Beograd) (N.S.) 100(114) (2016), 1-16. | DOI | MR | JFM

[9] Zhu, K.: Operator Theory in Function Spaces. Monographs and Textbooks in Pure and Applied Mathematics 139, Marcel Dekker, New York (1990). | MR | JFM

[10] Zygmund, A.: Trigonometric Series. Vol. I, II. Cambridge University Press, Cambridge (1959). | MR | JFM

Cité par Sources :