Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 559-576
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that if $\alpha >1$, then the logarithmically weighted Bergman space $A_{\log ^{\alpha }}^2$ is mapped by the Libera operator $\mathcal {L}$ into the space $A_{\log ^{\alpha -1}}^2$, while if $\alpha >2$ and $0\varepsilon \leq \alpha -2$, then the Hilbert matrix operator $H$ maps $A_{\log ^\alpha }^2$ into $A_{\log ^{\alpha -2-\varepsilon }}^2$.\newline We show that the Libera operator $\mathcal {L}$ maps the logarithmically weighted Bloch space $\mathcal {B}_{\log ^{\alpha }}$, $\alpha \in \mathbb {R}$, into itself, while $H$ maps $\mathcal {B}_{\log ^{\alpha }}$ into $\mathcal {B}_{\log ^{\alpha +1}}$.\newline In Pavlović's paper (2016) it is shown that $\mathcal {L}$ maps the logarithmically weighted Hardy-Bloch space $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha >0$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$. We show that this result is sharp. We also show that $H$ maps $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha \geq {0}$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$ and that this result is sharp also.
We show that if $\alpha >1$, then the logarithmically weighted Bergman space $A_{\log ^{\alpha }}^2$ is mapped by the Libera operator $\mathcal {L}$ into the space $A_{\log ^{\alpha -1}}^2$, while if $\alpha >2$ and $0\varepsilon \leq \alpha -2$, then the Hilbert matrix operator $H$ maps $A_{\log ^\alpha }^2$ into $A_{\log ^{\alpha -2-\varepsilon }}^2$.\newline We show that the Libera operator $\mathcal {L}$ maps the logarithmically weighted Bloch space $\mathcal {B}_{\log ^{\alpha }}$, $\alpha \in \mathbb {R}$, into itself, while $H$ maps $\mathcal {B}_{\log ^{\alpha }}$ into $\mathcal {B}_{\log ^{\alpha +1}}$.\newline In Pavlović's paper (2016) it is shown that $\mathcal {L}$ maps the logarithmically weighted Hardy-Bloch space $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha >0$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$. We show that this result is sharp. We also show that $H$ maps $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha \geq {0}$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$ and that this result is sharp also.
DOI :
10.21136/CMJ.2018.0555-16
Classification :
30H25, 47B38, 47G10
Keywords: Libera operator; Hilbert matrix operator; Hardy space; Bergman space; Bloch space; Hardy-Bloch space
Keywords: Libera operator; Hilbert matrix operator; Hardy space; Bergman space; Bloch space; Hardy-Bloch space
@article{10_21136_CMJ_2018_0555_16,
author = {Karapetrovi\'c, Boban},
title = {Libera and {Hilbert} matrix operator on logarithmically weighted {Bergman,} {Bloch} and {Hardy-Bloch} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {559--576},
year = {2018},
volume = {68},
number = {2},
doi = {10.21136/CMJ.2018.0555-16},
mrnumber = {3819191},
zbl = {06890390},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0555-16/}
}
TY - JOUR AU - Karapetrović, Boban TI - Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces JO - Czechoslovak Mathematical Journal PY - 2018 SP - 559 EP - 576 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0555-16/ DO - 10.21136/CMJ.2018.0555-16 LA - en ID - 10_21136_CMJ_2018_0555_16 ER -
%0 Journal Article %A Karapetrović, Boban %T Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces %J Czechoslovak Mathematical Journal %D 2018 %P 559-576 %V 68 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0555-16/ %R 10.21136/CMJ.2018.0555-16 %G en %F 10_21136_CMJ_2018_0555_16
Karapetrović, Boban. Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 559-576. doi: 10.21136/CMJ.2018.0555-16
Cité par Sources :