Rings consisting entirely of certain elements
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 553-558
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We completely determine when a ring consists entirely of weak idempotents, units and nilpotents. We prove that such ring is exactly isomorphic to one of the following: a Boolean ring; $\Bbb Z_3\oplus {\Bbb Z}_3$; $\Bbb Z_3\oplus B$ where $B$ is a Boolean ring; local ring with nil Jacobson radical; $M_2(\Bbb Z_2)$ or $M_2(\Bbb Z_3)$; or the ring of a Morita context with zero pairings where the underlying rings are $\Bbb Z_2$ or $\Bbb Z_3$.
We completely determine when a ring consists entirely of weak idempotents, units and nilpotents. We prove that such ring is exactly isomorphic to one of the following: a Boolean ring; $\Bbb Z_3\oplus {\Bbb Z}_3$; $\Bbb Z_3\oplus B$ where $B$ is a Boolean ring; local ring with nil Jacobson radical; $M_2(\Bbb Z_2)$ or $M_2(\Bbb Z_3)$; or the ring of a Morita context with zero pairings where the underlying rings are $\Bbb Z_2$ or $\Bbb Z_3$.
DOI : 10.21136/CMJ.2018.0554-16
Classification : 16E50, 16S34, 16U10
Keywords: idempotent; nilpotent; Boolean ring; local ring; Morita context
@article{10_21136_CMJ_2018_0554_16,
     author = {Chen, Huanyin and Sheibani, Marjan and Ashrafi, Nahid},
     title = {Rings consisting entirely of certain elements},
     journal = {Czechoslovak Mathematical Journal},
     pages = {553--558},
     year = {2018},
     volume = {68},
     number = {2},
     doi = {10.21136/CMJ.2018.0554-16},
     mrnumber = {3819190},
     zbl = {06890389},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0554-16/}
}
TY  - JOUR
AU  - Chen, Huanyin
AU  - Sheibani, Marjan
AU  - Ashrafi, Nahid
TI  - Rings consisting entirely of certain elements
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 553
EP  - 558
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0554-16/
DO  - 10.21136/CMJ.2018.0554-16
LA  - en
ID  - 10_21136_CMJ_2018_0554_16
ER  - 
%0 Journal Article
%A Chen, Huanyin
%A Sheibani, Marjan
%A Ashrafi, Nahid
%T Rings consisting entirely of certain elements
%J Czechoslovak Mathematical Journal
%D 2018
%P 553-558
%V 68
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0554-16/
%R 10.21136/CMJ.2018.0554-16
%G en
%F 10_21136_CMJ_2018_0554_16
Chen, Huanyin; Sheibani, Marjan; Ashrafi, Nahid. Rings consisting entirely of certain elements. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 553-558. doi: 10.21136/CMJ.2018.0554-16

[1] Ahn, M. S., Anderson, D. D.: Weakly clean rings and almost clean rings. Rocky Mountain J. Math. 36 (2006), 783-798. | DOI | MR | JFM

[2] Anderson, D. D., Camillo, V. P.: Commutative rings whose elements are a sum of a unit and idempotent. Comm. Algebra 30 (2002), 3327-3336. | DOI | MR | JFM

[3] Breaz, S., Gălugăreanu, G., Danchev, P., Micu, T.: Nil-clean matrix rings. Linear Algebra Appl. 439 (2013), 3115-3119. | DOI | MR | JFM

[4] Chen, H.: Rings Related Stable Range Conditions. Series in Algebra 11. World Scientific, Hackensack (2011). | MR | JFM

[5] Danchev, P. V., McGovern, W. W.: Commutative weakly nil clean unital rings. J. Algebra 425 (2015), 410-422. | DOI | MR | JFM

[6] Diesl, A. J.: Nil clean rings. J. Algebra 383 (2013), 197-211. | DOI | MR | JFM

[7] Du, X.: The adjoint semigroup of a ring. Commun. Algebra 30 (2002), 4507-4525. | DOI | MR | JFM

[8] Immormino, N. A.: Clean Rings & Clean Group Rings, Ph.D. Thesis. Bowling Green State University, Bowling Green (2013). | MR

[9] Kosan, M. T., Lee, T. K., Zhou, Y.: When is every matrix over a division ring a sum of an idempotent and a nilpotent?. Linear Algebra Appl. 450 (2014), 7-12. | DOI | MR | JFM

[10] McGovern, W., Raja, S., Sharp, A.: Commutative nil clean group rings. J. Algebra Appl. 14 (2015). | DOI | MR | JFM

[11] Nicholson, W. K.: Rings whose elements are quasi-regular or regular. Aequations Math. 9 (1973), 64-70. | DOI | MR | JFM

Cité par Sources :