Keywords: idempotent; nilpotent; Boolean ring; local ring; Morita context
@article{10_21136_CMJ_2018_0554_16,
author = {Chen, Huanyin and Sheibani, Marjan and Ashrafi, Nahid},
title = {Rings consisting entirely of certain elements},
journal = {Czechoslovak Mathematical Journal},
pages = {553--558},
year = {2018},
volume = {68},
number = {2},
doi = {10.21136/CMJ.2018.0554-16},
mrnumber = {3819190},
zbl = {06890389},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0554-16/}
}
TY - JOUR AU - Chen, Huanyin AU - Sheibani, Marjan AU - Ashrafi, Nahid TI - Rings consisting entirely of certain elements JO - Czechoslovak Mathematical Journal PY - 2018 SP - 553 EP - 558 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0554-16/ DO - 10.21136/CMJ.2018.0554-16 LA - en ID - 10_21136_CMJ_2018_0554_16 ER -
%0 Journal Article %A Chen, Huanyin %A Sheibani, Marjan %A Ashrafi, Nahid %T Rings consisting entirely of certain elements %J Czechoslovak Mathematical Journal %D 2018 %P 553-558 %V 68 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0554-16/ %R 10.21136/CMJ.2018.0554-16 %G en %F 10_21136_CMJ_2018_0554_16
Chen, Huanyin; Sheibani, Marjan; Ashrafi, Nahid. Rings consisting entirely of certain elements. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 553-558. doi: 10.21136/CMJ.2018.0554-16
[1] Ahn, M. S., Anderson, D. D.: Weakly clean rings and almost clean rings. Rocky Mountain J. Math. 36 (2006), 783-798. | DOI | MR | JFM
[2] Anderson, D. D., Camillo, V. P.: Commutative rings whose elements are a sum of a unit and idempotent. Comm. Algebra 30 (2002), 3327-3336. | DOI | MR | JFM
[3] Breaz, S., Gălugăreanu, G., Danchev, P., Micu, T.: Nil-clean matrix rings. Linear Algebra Appl. 439 (2013), 3115-3119. | DOI | MR | JFM
[4] Chen, H.: Rings Related Stable Range Conditions. Series in Algebra 11. World Scientific, Hackensack (2011). | MR | JFM
[5] Danchev, P. V., McGovern, W. W.: Commutative weakly nil clean unital rings. J. Algebra 425 (2015), 410-422. | DOI | MR | JFM
[6] Diesl, A. J.: Nil clean rings. J. Algebra 383 (2013), 197-211. | DOI | MR | JFM
[7] Du, X.: The adjoint semigroup of a ring. Commun. Algebra 30 (2002), 4507-4525. | DOI | MR | JFM
[8] Immormino, N. A.: Clean Rings & Clean Group Rings, Ph.D. Thesis. Bowling Green State University, Bowling Green (2013). | MR
[9] Kosan, M. T., Lee, T. K., Zhou, Y.: When is every matrix over a division ring a sum of an idempotent and a nilpotent?. Linear Algebra Appl. 450 (2014), 7-12. | DOI | MR | JFM
[10] McGovern, W., Raja, S., Sharp, A.: Commutative nil clean group rings. J. Algebra Appl. 14 (2015). | DOI | MR | JFM
[11] Nicholson, W. K.: Rings whose elements are quasi-regular or regular. Aequations Math. 9 (1973), 64-70. | DOI | MR | JFM
Cité par Sources :