Keywords: globals of graphs; global determination; isomorphism
@article{10_21136_CMJ_2018_0552_16,
author = {Bo\v{s}njak, Ivica and Madar\'asz, Roz\'alia},
title = {Some globally determined classes of graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {633--646},
year = {2018},
volume = {68},
number = {3},
doi = {10.21136/CMJ.2018.0552-16},
mrnumber = {3851880},
zbl = {06986961},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0552-16/}
}
TY - JOUR AU - Bošnjak, Ivica AU - Madarász, Rozália TI - Some globally determined classes of graphs JO - Czechoslovak Mathematical Journal PY - 2018 SP - 633 EP - 646 VL - 68 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0552-16/ DO - 10.21136/CMJ.2018.0552-16 LA - en ID - 10_21136_CMJ_2018_0552_16 ER -
%0 Journal Article %A Bošnjak, Ivica %A Madarász, Rozália %T Some globally determined classes of graphs %J Czechoslovak Mathematical Journal %D 2018 %P 633-646 %V 68 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0552-16/ %R 10.21136/CMJ.2018.0552-16 %G en %F 10_21136_CMJ_2018_0552_16
Bošnjak, Ivica; Madarász, Rozália. Some globally determined classes of graphs. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 633-646. doi: 10.21136/CMJ.2018.0552-16
[1] Baker, K. A., McNulty, G. F., Werner, H.: The finitely based varieties of graph algebras. Acta Sci. Math. 51 (1987), 3-15. | MR | JFM
[2] Baumann, U., Pöschel, R., Schmeichel, I.: Power graphs. J. Inf. Process. Cybern. 30 (1994), 135-142. | JFM
[3] Bošnjak, I., Madarász, R.: On power structures. Algebra Discrete Math. 2003 (2003), 14-35. | MR | JFM
[4] Brink, C.: Power structures. Algebra Univers. 30 (1993), 177-216. | DOI | MR | JFM
[5] Diestel, R.: Graph Theory. Graduate Texts in Mathematics 173 Springer, Berlin (2000). | DOI | MR | JFM
[6] Drápal, A.: Globals of unary algebras. Czech. Math. J. 35 (1985), 52-58. | MR | JFM
[7] Goldblatt, R.: Varieties of complex algebras. Ann. Pure Appl. Logic 44 (1989), 173-242. | DOI | MR | JFM
[8] Gould, M., Iskra, J. A., Tsinakis, C.: Globals of completely regular periodic semigroups. Semigroup Forum 29 (1984), 365-374. | DOI | MR | JFM
[9] Herchl, J., Jakubíková-Studenovská, D.: Globals of unary algebras. Soft Comput. 11 (2007), 1107-1112. | DOI | JFM
[10] Kobayashi, Y.: Semilattices are globally determined. Semigroup Forum 29 (1984), 217-222. | DOI | MR | JFM
[11] Korczyński, W.: On a model of concurrent systems. Demonstr. Math. 30 (1997), 809-828. | DOI | MR | JFM
[12] Korczyński, W.: Petri nets and power graphs---a comparison of two concurrence-models. Demonstr. Math. 31 (1998), 179-192. | DOI | MR | JFM
[13] Lovász, L.: On the cancellation law among finite relational structures. Period. Math. Hung. 1 (1971), 145-156. | DOI | MR | JFM
[14] Lukács, E.: Globals of $G$-algebras. Houston J. Math. 13 (1987), 241-244. | MR | JFM
[15] McNulty, G. F., Shallon, C. R.: Inherently nonfinitely based finite algebras. Universal Algebra and Lattice Theory R. S. Freese, O. C. Garcia Lecture Notes in Mathematics 1004, Springer, Berlin (1983), 206-231. | DOI | MR | JFM
[16] Mogiljanskaja, E. M.: Non-isomorphic semigroups with isomorphic semigroups of subsets. Semigroup Forum 6 (1973), 330-333. | DOI | MR | JFM
[17] Shallon, C. R.: Non-finitely based binary algebras derived from lattices. Ph.D. Thesis, University of California, Los Angeles (1979). | MR
[18] Tamura, T.: On the recent results in the study of power semigroups. Semigroups and Their Applications Reidel Publishing Company, Dordrecht (1987), S. M. Goberstein, P. M. Higgins 191-200. | DOI | MR | JFM
[19] Whitney, S.: Théories linéaries. Ph.D. Thesis, Université Laval, Québec (1977).
Cité par Sources :