Some globally determined classes of graphs
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 633-646 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a class of graphs we say that it is globally determined if any two nonisomorphic graphs from that class have nonisomorphic globals. We will prove that the class of so called CCB graphs and the class of finite forests are globally determined.
For a class of graphs we say that it is globally determined if any two nonisomorphic graphs from that class have nonisomorphic globals. We will prove that the class of so called CCB graphs and the class of finite forests are globally determined.
DOI : 10.21136/CMJ.2018.0552-16
Classification : 05C25, 05C60, 05C76
Keywords: globals of graphs; global determination; isomorphism
@article{10_21136_CMJ_2018_0552_16,
     author = {Bo\v{s}njak, Ivica and Madar\'asz, Roz\'alia},
     title = {Some globally determined classes of graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {633--646},
     year = {2018},
     volume = {68},
     number = {3},
     doi = {10.21136/CMJ.2018.0552-16},
     mrnumber = {3851880},
     zbl = {06986961},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0552-16/}
}
TY  - JOUR
AU  - Bošnjak, Ivica
AU  - Madarász, Rozália
TI  - Some globally determined classes of graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 633
EP  - 646
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0552-16/
DO  - 10.21136/CMJ.2018.0552-16
LA  - en
ID  - 10_21136_CMJ_2018_0552_16
ER  - 
%0 Journal Article
%A Bošnjak, Ivica
%A Madarász, Rozália
%T Some globally determined classes of graphs
%J Czechoslovak Mathematical Journal
%D 2018
%P 633-646
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0552-16/
%R 10.21136/CMJ.2018.0552-16
%G en
%F 10_21136_CMJ_2018_0552_16
Bošnjak, Ivica; Madarász, Rozália. Some globally determined classes of graphs. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 633-646. doi: 10.21136/CMJ.2018.0552-16

[1] Baker, K. A., McNulty, G. F., Werner, H.: The finitely based varieties of graph algebras. Acta Sci. Math. 51 (1987), 3-15. | MR | JFM

[2] Baumann, U., Pöschel, R., Schmeichel, I.: Power graphs. J. Inf. Process. Cybern. 30 (1994), 135-142. | JFM

[3] Bošnjak, I., Madarász, R.: On power structures. Algebra Discrete Math. 2003 (2003), 14-35. | MR | JFM

[4] Brink, C.: Power structures. Algebra Univers. 30 (1993), 177-216. | DOI | MR | JFM

[5] Diestel, R.: Graph Theory. Graduate Texts in Mathematics 173 Springer, Berlin (2000). | DOI | MR | JFM

[6] Drápal, A.: Globals of unary algebras. Czech. Math. J. 35 (1985), 52-58. | MR | JFM

[7] Goldblatt, R.: Varieties of complex algebras. Ann. Pure Appl. Logic 44 (1989), 173-242. | DOI | MR | JFM

[8] Gould, M., Iskra, J. A., Tsinakis, C.: Globals of completely regular periodic semigroups. Semigroup Forum 29 (1984), 365-374. | DOI | MR | JFM

[9] Herchl, J., Jakubíková-Studenovská, D.: Globals of unary algebras. Soft Comput. 11 (2007), 1107-1112. | DOI | JFM

[10] Kobayashi, Y.: Semilattices are globally determined. Semigroup Forum 29 (1984), 217-222. | DOI | MR | JFM

[11] Korczyński, W.: On a model of concurrent systems. Demonstr. Math. 30 (1997), 809-828. | DOI | MR | JFM

[12] Korczyński, W.: Petri nets and power graphs---a comparison of two concurrence-models. Demonstr. Math. 31 (1998), 179-192. | DOI | MR | JFM

[13] Lovász, L.: On the cancellation law among finite relational structures. Period. Math. Hung. 1 (1971), 145-156. | DOI | MR | JFM

[14] Lukács, E.: Globals of $G$-algebras. Houston J. Math. 13 (1987), 241-244. | MR | JFM

[15] McNulty, G. F., Shallon, C. R.: Inherently nonfinitely based finite algebras. Universal Algebra and Lattice Theory R. S. Freese, O. C. Garcia Lecture Notes in Mathematics 1004, Springer, Berlin (1983), 206-231. | DOI | MR | JFM

[16] Mogiljanskaja, E. M.: Non-isomorphic semigroups with isomorphic semigroups of subsets. Semigroup Forum 6 (1973), 330-333. | DOI | MR | JFM

[17] Shallon, C. R.: Non-finitely based binary algebras derived from lattices. Ph.D. Thesis, University of California, Los Angeles (1979). | MR

[18] Tamura, T.: On the recent results in the study of power semigroups. Semigroups and Their Applications Reidel Publishing Company, Dordrecht (1987), S. M. Goberstein, P. M. Higgins 191-200. | DOI | MR | JFM

[19] Whitney, S.: Théories linéaries. Ph.D. Thesis, Université Laval, Québec (1977).

Cité par Sources :