The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 611-631
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan's linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.
DOI :
10.21136/CMJ.2018.0551-16
Classification :
32A07, 32A25, 32M05
Keywords: holomorphic automorphism group; Bergman kernel; Reinhardt domain
Keywords: holomorphic automorphism group; Bergman kernel; Reinhardt domain
@article{10_21136_CMJ_2018_0551_16,
author = {Kim, Hyeseon and Yamamori, Atsushi},
title = {The holomorphic automorphism groups of twisted {Fock-Bargmann-Hartogs} domains},
journal = {Czechoslovak Mathematical Journal},
pages = {611--631},
publisher = {mathdoc},
volume = {68},
number = {3},
year = {2018},
doi = {10.21136/CMJ.2018.0551-16},
mrnumber = {3851879},
zbl = {06986960},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0551-16/}
}
TY - JOUR AU - Kim, Hyeseon AU - Yamamori, Atsushi TI - The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains JO - Czechoslovak Mathematical Journal PY - 2018 SP - 611 EP - 631 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0551-16/ DO - 10.21136/CMJ.2018.0551-16 LA - en ID - 10_21136_CMJ_2018_0551_16 ER -
%0 Journal Article %A Kim, Hyeseon %A Yamamori, Atsushi %T The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains %J Czechoslovak Mathematical Journal %D 2018 %P 611-631 %V 68 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0551-16/ %R 10.21136/CMJ.2018.0551-16 %G en %F 10_21136_CMJ_2018_0551_16
Kim, Hyeseon; Yamamori, Atsushi. The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 611-631. doi: 10.21136/CMJ.2018.0551-16
Cité par Sources :