The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 611-631 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan's linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.
We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan's linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.
DOI : 10.21136/CMJ.2018.0551-16
Classification : 32A07, 32A25, 32M05
Keywords: holomorphic automorphism group; Bergman kernel; Reinhardt domain
@article{10_21136_CMJ_2018_0551_16,
     author = {Kim, Hyeseon and Yamamori, Atsushi},
     title = {The holomorphic automorphism groups of twisted {Fock-Bargmann-Hartogs} domains},
     journal = {Czechoslovak Mathematical Journal},
     pages = {611--631},
     year = {2018},
     volume = {68},
     number = {3},
     doi = {10.21136/CMJ.2018.0551-16},
     mrnumber = {3851879},
     zbl = {06986960},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0551-16/}
}
TY  - JOUR
AU  - Kim, Hyeseon
AU  - Yamamori, Atsushi
TI  - The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 611
EP  - 631
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0551-16/
DO  - 10.21136/CMJ.2018.0551-16
LA  - en
ID  - 10_21136_CMJ_2018_0551_16
ER  - 
%0 Journal Article
%A Kim, Hyeseon
%A Yamamori, Atsushi
%T The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains
%J Czechoslovak Mathematical Journal
%D 2018
%P 611-631
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0551-16/
%R 10.21136/CMJ.2018.0551-16
%G en
%F 10_21136_CMJ_2018_0551_16
Kim, Hyeseon; Yamamori, Atsushi. The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 611-631. doi: 10.21136/CMJ.2018.0551-16

[1] Ahn, H., Byun, J., Park, J.-D.: Automorphisms of the Hartogs type domains over classical symmetric domains. Int. J. Math. 23 (2012), 1250098, 11 pages. | DOI | MR | JFM

[2] Bi, E., Feng, Z., Tu, Z.: Balanced metrics on the Fock-Bargmann-Hartogs domains. Ann. Global Anal. Geom. 49 (2016), 349-359. | DOI | MR | JFM

[3] D'Angelo, J. P.: An explicit computation of the Bergman kernel function. J. Geom. Anal. 4 (1994), 23-34. | DOI | MR | JFM

[4] Engliš, M., Zhang, G.: On a generalized Forelli-Rudin construction. Complex Var. Elliptic Equ. 51 (2006), 277-294. | DOI | MR | JFM

[5] Huo, Z.: The Bergman kernel on some Hartogs domains. J. Geom. Anal. 27 (2017), 271-299. | DOI | MR | JFM

[6] Ishi, H., Kai, C.: The representative domain of a homogeneous bounded domain. Kyushu J. Math. 64 (2010), 35-47. | DOI | MR | JFM

[7] Jarnicki, M., Pflug, P.: First Steps in Several Complex Variables: Reinhardt Domains. EMS Textbooks in Mathematics, European Mathematical Society, Zürich (2008). | DOI | MR | JFM

[8] Jarnicki, M., Pflug, P.: Invariant Distances and Metrics in Complex Analysis. De Gruyter Expositions in Mathematics 9, Walter de Gruyter, Berlin (2013). | DOI | MR | JFM

[9] Kim, H., Ninh, V. T., Yamamori, A.: The automorphism group of a certain unbounded non-hyperbolic domain. J. Math. Anal. Appl. 409 (2014), 637-642. | DOI | MR | JFM

[10] Kim, H., Yamamori, A.: An application of a Diederich-Ohsawa theorem in characterizing some Hartogs domains. Bull. Sci. Math. 139 (2015), 737-749. | DOI | MR | JFM

[11] Kim, H., Yamamori, A., Zhang, L.: Invariant metrics on unbounded strongly pseudoconvex domains with non-compact automorphism group. Ann. Global Anal. Geom. 50 (2016), 261-295. | DOI | MR | JFM

[12] Kodama, A.: On the holomorphic automorphism group of a generalized complex ellipsoid. Complex Var. Elliptic Equ. 59 (2014), 1342-1349. | DOI | MR | JFM

[13] Ligocka, E.: On the Forelli-Rudin construction and weighted Bergman projections. Stud. Math. 94 (1989), 257-272. | DOI | MR | JFM

[14] Loi, A., Zedda, M.: Balanced metrics on Cartan and Cartan-Hartogs domains. Math. Z. 270 (2012), 1077-1087. | DOI | MR | JFM

[15] Lu, Q.: On the representative domain. Several Complex Variables Proc. 1981 Hangzhou Conf., Birkhäuser, Boston (1984), 199-211. | DOI | MR | JFM

[16] Ning, J., Zhang, H., Zhou, X.: Proper holomorphic mappings between invariant domains in $\Bbb C^n$. Trans. Am. Math. Soc. 369 (2017), 517-536. | DOI | MR | JFM

[17] Rong, F.: On automorphism groups of generalized Hua domains. Math. Proc. Camb. Philos. Soc. 156 (2014), 461-472. | DOI | MR | JFM

[18] Rong, F.: On automorphisms of quasi-circular domains fixing the origin. Bull. Sci. Math. 140 (2016), 92-98. | DOI | MR | JFM

[19] Roos, G.: Weighted Bergman kernels and virtual Bergman kernels. Sci. China Ser. A 48 (2005), Suppl., 225-237. | DOI | MR | JFM

[20] Springer, G.: Pseudo-conformal transformations onto circular domains. Duke Math. J. 18 (1951), 411-424. | DOI | MR | JFM

[21] Tsuboi, T.: Bergman representative domains and minimal domains. Jap. J. Math. 29 (1959), 141-148. | DOI | MR | JFM

[22] Tu, Z., Wang, L.: Rigidity of proper holomorphic mappings between certain unbounded non-hyperbolic domains. J. Math. Anal. Appl. 419 (2014), 703-714. | DOI | MR | JFM

[23] Tu, Z., Wang, L.: Rigidity of proper holomorphic mappings between equidimensional Hua domains. Math. Ann. 363 (2015), 1-34. | DOI | MR | JFM

[24] Yamamori, A.: A remark on the Bergman kernels of the Cartan-Hartogs domains. C. R., Math. Acad. Sci. Paris 350 (2012), 157-160. | DOI | MR | JFM

[25] Yamamori, A.: The Bergman kernel of the Fock-Bargmann-Hartogs domain and the polylogarithm function. Complex Var. Elliptic Equ. 58 (2013), 783-793. | DOI | MR | JFM

[26] Yamamori, A.: Automorphisms of normal quasi-circular domains. Bull. Sci. Math. 138 (2014), 406-415. | DOI | MR | JFM

[27] Yamamori, A.: A generalization of the Forelli-Rudin construction and deflation identities. Proc. Am. Math. Soc. 143 (2015), 1569-1581. | DOI | MR | JFM

[28] Yamamori, A.: Non-hyperbolic unbounded Reinhardt domains: non-compact automorphism group, Cartan's linearity theorem and explicit Bergman kernel. Tohoku Math. J. 69 (2017), 239-260. | DOI | MR | JFM

[29] Yin, W.: The Bergman kernels on Cartan-Hartogs domains. Chin. Sci. Bull. 44 (1999), 1947-1951. | DOI | MR | JFM

[30] Zedda, M.: Berezin-Engliš' quantization of Cartan-Hartogs domains. J. Geom. Phys. 100 (2016), 62-67. | DOI | MR | JFM

[31] Zhang, L.: Bergman kernel function on Hua construction of the second type. Sci. China Ser. A 48 (2005), Suppl., 400-412. | DOI | MR | JFM

Cité par Sources :