Note on a conjecture for the sum of signless Laplacian eigenvalues
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 601-610
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
For a simple graph $G$ on $n$ vertices and an integer $k$ with $1\leq k\leq n$, denote by $\mathcal {S}_k^+(G)$ the sum of $k$ largest signless Laplacian eigenvalues of $G$. It was conjectured that $\mathcal {S}_k^+(G)\leq e(G)+{k+1 \choose 2}$, where $e(G)$ is the number of edges of $G$. This conjecture has been proved to be true for all graphs when $k\in \{1,2,n-1,n\}$, and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all $k$). In this note, this conjecture is proved to be true for all graphs when $k=n-2$, and for some new classes of graphs.
For a simple graph $G$ on $n$ vertices and an integer $k$ with $1\leq k\leq n$, denote by $\mathcal {S}_k^+(G)$ the sum of $k$ largest signless Laplacian eigenvalues of $G$. It was conjectured that $\mathcal {S}_k^+(G)\leq e(G)+{k+1 \choose 2}$, where $e(G)$ is the number of edges of $G$. This conjecture has been proved to be true for all graphs when $k\in \{1,2,n-1,n\}$, and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all $k$). In this note, this conjecture is proved to be true for all graphs when $k=n-2$, and for some new classes of graphs.
DOI :
10.21136/CMJ.2018.0548-16
Classification :
05C50, 15A18
Keywords: sum of signless Laplacian eigenvalues; upper bound; clique number; girth
Keywords: sum of signless Laplacian eigenvalues; upper bound; clique number; girth
@article{10_21136_CMJ_2018_0548_16,
author = {Chen, Xiaodan and Hao, Guoliang and Jin, Dequan and Li, Jingjian},
title = {Note on a conjecture for the sum of signless {Laplacian} eigenvalues},
journal = {Czechoslovak Mathematical Journal},
pages = {601--610},
year = {2018},
volume = {68},
number = {3},
doi = {10.21136/CMJ.2018.0548-16},
mrnumber = {3851878},
zbl = {06986959},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0548-16/}
}
TY - JOUR AU - Chen, Xiaodan AU - Hao, Guoliang AU - Jin, Dequan AU - Li, Jingjian TI - Note on a conjecture for the sum of signless Laplacian eigenvalues JO - Czechoslovak Mathematical Journal PY - 2018 SP - 601 EP - 610 VL - 68 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0548-16/ DO - 10.21136/CMJ.2018.0548-16 LA - en ID - 10_21136_CMJ_2018_0548_16 ER -
%0 Journal Article %A Chen, Xiaodan %A Hao, Guoliang %A Jin, Dequan %A Li, Jingjian %T Note on a conjecture for the sum of signless Laplacian eigenvalues %J Czechoslovak Mathematical Journal %D 2018 %P 601-610 %V 68 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0548-16/ %R 10.21136/CMJ.2018.0548-16 %G en %F 10_21136_CMJ_2018_0548_16
Chen, Xiaodan; Hao, Guoliang; Jin, Dequan; Li, Jingjian. Note on a conjecture for the sum of signless Laplacian eigenvalues. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 601-610. doi: 10.21136/CMJ.2018.0548-16
Cité par Sources :