Note on a conjecture for the sum of signless Laplacian eigenvalues
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 601-610 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a simple graph $G$ on $n$ vertices and an integer $k$ with $1\leq k\leq n$, denote by $\mathcal {S}_k^+(G)$ the sum of $k$ largest signless Laplacian eigenvalues of $G$. It was conjectured that $\mathcal {S}_k^+(G)\leq e(G)+{k+1 \choose 2}$, where $e(G)$ is the number of edges of $G$. This conjecture has been proved to be true for all graphs when $k\in \{1,2,n-1,n\}$, and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all $k$). In this note, this conjecture is proved to be true for all graphs when $k=n-2$, and for some new classes of graphs.
For a simple graph $G$ on $n$ vertices and an integer $k$ with $1\leq k\leq n$, denote by $\mathcal {S}_k^+(G)$ the sum of $k$ largest signless Laplacian eigenvalues of $G$. It was conjectured that $\mathcal {S}_k^+(G)\leq e(G)+{k+1 \choose 2}$, where $e(G)$ is the number of edges of $G$. This conjecture has been proved to be true for all graphs when $k\in \{1,2,n-1,n\}$, and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all $k$). In this note, this conjecture is proved to be true for all graphs when $k=n-2$, and for some new classes of graphs.
DOI : 10.21136/CMJ.2018.0548-16
Classification : 05C50, 15A18
Keywords: sum of signless Laplacian eigenvalues; upper bound; clique number; girth
@article{10_21136_CMJ_2018_0548_16,
     author = {Chen, Xiaodan and Hao, Guoliang and Jin, Dequan and Li, Jingjian},
     title = {Note on a conjecture for the sum of signless {Laplacian} eigenvalues},
     journal = {Czechoslovak Mathematical Journal},
     pages = {601--610},
     year = {2018},
     volume = {68},
     number = {3},
     doi = {10.21136/CMJ.2018.0548-16},
     mrnumber = {3851878},
     zbl = {06986959},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0548-16/}
}
TY  - JOUR
AU  - Chen, Xiaodan
AU  - Hao, Guoliang
AU  - Jin, Dequan
AU  - Li, Jingjian
TI  - Note on a conjecture for the sum of signless Laplacian eigenvalues
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 601
EP  - 610
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0548-16/
DO  - 10.21136/CMJ.2018.0548-16
LA  - en
ID  - 10_21136_CMJ_2018_0548_16
ER  - 
%0 Journal Article
%A Chen, Xiaodan
%A Hao, Guoliang
%A Jin, Dequan
%A Li, Jingjian
%T Note on a conjecture for the sum of signless Laplacian eigenvalues
%J Czechoslovak Mathematical Journal
%D 2018
%P 601-610
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0548-16/
%R 10.21136/CMJ.2018.0548-16
%G en
%F 10_21136_CMJ_2018_0548_16
Chen, Xiaodan; Hao, Guoliang; Jin, Dequan; Li, Jingjian. Note on a conjecture for the sum of signless Laplacian eigenvalues. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 601-610. doi: 10.21136/CMJ.2018.0548-16

[1] Ashraf, F., Omidi, G. R., Tayfeh-Rezaie, B.: On the sum of signless Laplacian eigenvalues of a graph. Linear Algebra Appl. 438 (2013), 4539-4546. | DOI | MR | JFM

[2] Bai, H.: The Grone-Merris conjecture. Trans. Am. Math. Soc. 363 (2011), 4463-4474. | DOI | MR | JFM

[3] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs. Universitext, Springer, Berlin (2012). | DOI | MR | JFM

[4] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). | DOI | MR | JFM

[5] Du, Z., Zhou, B.: Upper bounds for the sum of Laplacian eigenvalues of graphs. Linear Algebra Appl. 436 (2012), 3672-3683. | DOI | MR | JFM

[6] Feng, L., Yu, G.: On three conjectures involving the signless Laplacian spectral radius of graphs. Publ. Inst. Math., Nouv. Sér. 85 (2009), 35-38. | DOI | MR | JFM

[7] Fritscher, E., Hoppen, C., Rocha, I., Trevisan, V.: On the sum of the Laplacian eigenvalues of a tree. Linear Algebra Appl. 435 (2011), 371-399. | DOI | MR | JFM

[8] Ganie, H. A., Alghamdi, A. M., Pirzada, S.: On the sum of the Laplacian eigenvalues of a graph and Brouwer's conjecture. Linear Algebra Appl. 501 (2016), 376-389. | DOI | MR | JFM

[9] Grone, R., Merris, R.: The Laplacian spectrum of a graph II. SIAM J. Discrete Math. 7 (1994), 221-229. | DOI | MR | JFM

[10] Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B.: On the sum of Laplacian eigenvalues of graphs. Linear Algebra Appl. 432 (2010), 2214-2221. | DOI | MR | JFM

[11] Rocha, I., Trevisan, V.: Bounding the sum of the largest Laplacian eigenvalues of graphs. Discrete Appl. Math. 170 (2014), 95-103. | DOI | MR | JFM

[12] Wang, S., Huang, Y., Liu, B.: On a conjecture for the sum of Laplacian eigenvalues. Math. Comput. Modelling 56 (2012), 60-68. | DOI | MR | JFM

[13] Yang, J., You, L.: On a conjecture for the signless Laplacian eigenvalues. Linear Algebra Appl. 446 (2014), 115-132. | DOI | MR | JFM

Cité par Sources :