On the weighted estimate of the Bergman projection
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 497-511
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present a proof of the weighted estimate of the Bergman projection that does not use extrapolation results. This estimate is extended to product domains using an adapted definition of Békollé-Bonami weights in this setting. An application to bounded Toeplitz products is also given.
We present a proof of the weighted estimate of the Bergman projection that does not use extrapolation results. This estimate is extended to product domains using an adapted definition of Békollé-Bonami weights in this setting. An application to bounded Toeplitz products is also given.
DOI : 10.21136/CMJ.2018.0531-16
Classification : 30H20, 42A61, 42C40, 47B35, 47B38
Keywords: Bergman space; reproducing kernel; Toeplitz operator; Békollé-Bonami weight
@article{10_21136_CMJ_2018_0531_16,
     author = {Sehba, Beno{\^\i}t Florent},
     title = {On the weighted estimate of the {Bergman} projection},
     journal = {Czechoslovak Mathematical Journal},
     pages = {497--511},
     year = {2018},
     volume = {68},
     number = {2},
     doi = {10.21136/CMJ.2018.0531-16},
     mrnumber = {3819187},
     zbl = {06890386},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0531-16/}
}
TY  - JOUR
AU  - Sehba, Benoît Florent
TI  - On the weighted estimate of the Bergman projection
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 497
EP  - 511
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0531-16/
DO  - 10.21136/CMJ.2018.0531-16
LA  - en
ID  - 10_21136_CMJ_2018_0531_16
ER  - 
%0 Journal Article
%A Sehba, Benoît Florent
%T On the weighted estimate of the Bergman projection
%J Czechoslovak Mathematical Journal
%D 2018
%P 497-511
%V 68
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0531-16/
%R 10.21136/CMJ.2018.0531-16
%G en
%F 10_21136_CMJ_2018_0531_16
Sehba, Benoît Florent. On the weighted estimate of the Bergman projection. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 497-511. doi: 10.21136/CMJ.2018.0531-16

[1] Aleman, A., Pott, S., Reguera, M. C.: Sarason conjecture on the Bergman space. Int. Math. Res. Not. 2017 (2017), 4320-4349. | DOI | MR

[2] Bekollé, D.: Inégalité à poids pour le projecteur de Bergman dans la boule unité de $\mathbb C^n$. Stud. Math. 71 (1982), 305-323 French. | DOI | MR | JFM

[3] Bekollé, D., Bonami, A.: Inégalités à poids pour le noyau de Bergman. C. R. Acad. Sci., Paris, Sér. A 286 (1978), 775-778 French. | MR | JFM

[4] Cruz-Uribe, D.: The invertibility of the product of unbounded Toeplitz operators. Integral Equations Oper. Theory 20 (1994), 231-237. | DOI | MR | JFM

[5] García-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, 116 Notas de Matemática (104), North-Holland Publishing, Amsterdam (1985). | DOI | MR | JFM

[6] Hytönen, T. P., Lacey, M. T., Pérez, C.: Sharp weighted bounds for the $q$-variation of singular integrals. Bull. Lond. Math. Soc. 45 (2013), 529-540. | DOI | MR | JFM

[7] Hytönen, T., Pérez, C.: Sharp weighted bounds involving $A_{\infty}$. Anal. PDE 6 (2013), 777-818. | DOI | MR | JFM

[8] Isralowitz, J.: Invertible Toeplitz products, weighted norm inequalities, and $ A_p$ weights. J. Oper. Theory 71 (2014), 381-410. | DOI | MR | JFM

[9] Lerner, A. K.: A simple proof of the $A_2$ conjecture. Int. Math. Res. Not. 2013 (2013), 3159-3170. | DOI | MR | JFM

[10] Michalska, M., Nowak, M., Sobolewski, P.: Bounded Toeplitz and Hankel products on weighted Bergman spaces of the unit ball. Ann. Pol. Math. 99 (2010), 45-53. | DOI | MR | JFM

[11] Moen, K.: Sharp weighted bounds without testing or extrapolation. Arch. Math. 99 (2012), 457-466. | DOI | MR | JFM

[12] Nazarov, F.: A counterexample to Sarason's conjecture. Preprint available at\ http://users.math.msu.edu/users/fedja/Preprints/Sarps.html

[13] Pott, S., Reguera, M. C.: Sharp Békollé estimates for the Bergman projection. J. Funct. Anal. 265 (2013), 3233-3244. | DOI | MR | JFM

[14] Pott, S., Strouse, E.: Products of Toeplitz operators on the Bergman spaces $A^2_\alpha$. Algebra Anal. 18 (2006), 144-161 translation in St. Petersbg. Math. J. 18 2007 105-118. | DOI | MR | JFM

[15] Sarason, D.: Products of Toeplitz operators. Linear and Complex Analysis Problem Book 3, Part I V. P. Havin, N. K. Nikolski Lecture Notes in Mathematics 1573, Springer, Berlin (1994), 318-319. | DOI | MR | JFM

[16] Stroethoff, K., Zheng, D.: Bounded Toeplitz products on the Bergman space of the polydisk. J. Math. Anal. Appl. 278 (2003), 125-135. | DOI | MR | JFM

[17] Stroethoff, K., Zheng, D.: Bounded Toeplitz products on Bergman spaces of the unit ball. J. Math. Anal. Appl. 325 (2007), 114-129. | DOI | MR | JFM

[18] Stroethoff, K., Zheng, D.: Bounded Toeplitz products on weighted Bergman spaces. J. Oper. Theory 59 (2008), 277-308. | MR | JFM

Cité par Sources :