On the weighted estimate of the Bergman projection
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 497-511
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We present a proof of the weighted estimate of the Bergman projection that does not use extrapolation results. This estimate is extended to product domains using an adapted definition of Békollé-Bonami weights in this setting. An application to bounded Toeplitz products is also given.
We present a proof of the weighted estimate of the Bergman projection that does not use extrapolation results. This estimate is extended to product domains using an adapted definition of Békollé-Bonami weights in this setting. An application to bounded Toeplitz products is also given.
DOI :
10.21136/CMJ.2018.0531-16
Classification :
30H20, 42A61, 42C40, 47B35, 47B38
Keywords: Bergman space; reproducing kernel; Toeplitz operator; Békollé-Bonami weight
Keywords: Bergman space; reproducing kernel; Toeplitz operator; Békollé-Bonami weight
@article{10_21136_CMJ_2018_0531_16,
author = {Sehba, Beno{\^\i}t Florent},
title = {On the weighted estimate of the {Bergman} projection},
journal = {Czechoslovak Mathematical Journal},
pages = {497--511},
year = {2018},
volume = {68},
number = {2},
doi = {10.21136/CMJ.2018.0531-16},
mrnumber = {3819187},
zbl = {06890386},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0531-16/}
}
TY - JOUR AU - Sehba, Benoît Florent TI - On the weighted estimate of the Bergman projection JO - Czechoslovak Mathematical Journal PY - 2018 SP - 497 EP - 511 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0531-16/ DO - 10.21136/CMJ.2018.0531-16 LA - en ID - 10_21136_CMJ_2018_0531_16 ER -
Sehba, Benoît Florent. On the weighted estimate of the Bergman projection. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 497-511. doi: 10.21136/CMJ.2018.0531-16
Cité par Sources :