Valency seven symmetric graphs of order $2pq$
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 581-599.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A graph is said to be symmetric if its automorphism group acts transitively on its arcs. In this paper, all connected valency seven symmetric graphs of order $2pq$ are classified, where $p$, $q$ are distinct primes. It follows from the classification that there is a unique connected valency seven symmetric graph of order $4p$, and that for odd primes $p$ and $q$, there is an infinite family of connected valency seven one-regular graphs of order $2pq$ with solvable automorphism groups, and there are four sporadic ones with nonsolvable automorphism groups, which is $1,2,3$-arc transitive, respectively. In particular, one of the four sporadic ones is primitive, and the other two of the four sporadic ones are bi-primitive.
DOI : 10.21136/CMJ.2018.0530-15
Classification : 05C25, 20B25
Keywords: arc-transitive graph; symmetric graph; $s$-regular graph
@article{10_21136_CMJ_2018_0530_15,
     author = {Hua, Xiao-Hui and Chen, Li},
     title = {Valency seven symmetric graphs of order $2pq$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {581--599},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2018},
     doi = {10.21136/CMJ.2018.0530-15},
     mrnumber = {3851877},
     zbl = {06986958},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0530-15/}
}
TY  - JOUR
AU  - Hua, Xiao-Hui
AU  - Chen, Li
TI  - Valency seven symmetric graphs of order $2pq$
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 581
EP  - 599
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0530-15/
DO  - 10.21136/CMJ.2018.0530-15
LA  - en
ID  - 10_21136_CMJ_2018_0530_15
ER  - 
%0 Journal Article
%A Hua, Xiao-Hui
%A Chen, Li
%T Valency seven symmetric graphs of order $2pq$
%J Czechoslovak Mathematical Journal
%D 2018
%P 581-599
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0530-15/
%R 10.21136/CMJ.2018.0530-15
%G en
%F 10_21136_CMJ_2018_0530_15
Hua, Xiao-Hui; Chen, Li. Valency seven symmetric graphs of order $2pq$. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 581-599. doi : 10.21136/CMJ.2018.0530-15. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0530-15/

Cité par Sources :