Keywords: arc-transitive graph; symmetric graph; $s$-regular graph
@article{10_21136_CMJ_2018_0530_15,
author = {Hua, Xiao-Hui and Chen, Li},
title = {Valency seven symmetric graphs of order $2pq$},
journal = {Czechoslovak Mathematical Journal},
pages = {581--599},
year = {2018},
volume = {68},
number = {3},
doi = {10.21136/CMJ.2018.0530-15},
mrnumber = {3851877},
zbl = {06986958},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0530-15/}
}
TY - JOUR AU - Hua, Xiao-Hui AU - Chen, Li TI - Valency seven symmetric graphs of order $2pq$ JO - Czechoslovak Mathematical Journal PY - 2018 SP - 581 EP - 599 VL - 68 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0530-15/ DO - 10.21136/CMJ.2018.0530-15 LA - en ID - 10_21136_CMJ_2018_0530_15 ER -
Hua, Xiao-Hui; Chen, Li. Valency seven symmetric graphs of order $2pq$. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 581-599. doi: 10.21136/CMJ.2018.0530-15
[1] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24 (1997), 235-265. | DOI | MR | JFM
[2] Cheng, Y., Oxley, J.: On weakly symmetric graphs of order twice a prime. J. Comb. Theory, Ser. B 42 (1987), 196-211. | DOI | MR | JFM
[3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford University Press, Eynsham (1985). | MR | JFM
[4] Djoković, D. Ž., Miller, G. L.: Regular groups of automorphisms of cubic graphs. J. Comb. Theory, Ser. B 29 (1980), 195-230. | DOI | MR | JFM
[5] Fang, X. G., Praeger, C. E.: Finite two-arc transitive graphs admitting a Suzuki simple group. Commun. Algebra 27 (1999), 3727-3754. | DOI | MR | JFM
[6] Fang, X., Wang, J., Xu, M. Y.: On 1-arc-regular graphs. Eur. J. Comb. 23 (2002), 785-791. | DOI | MR | JFM
[7] Feng, Y.-Q., Ghasemi, M., Yang, D.-W.: Cubic symmetric graphs of order $8p^3$. Discrete Math. 318 (2014), 62-70. | DOI | MR | JFM
[8] Feng, Y.-Q., Kwak, J. H.: Cubic symmetric graphs of order a small number times a prime or a prime square. J. Comb. Theory, Ser. B 97 (2007), 627-646. | DOI | MR | JFM
[9] Feng, Y.-Q., Kwak, J. H., Xu, M.-Y.: Cubic $s$-regular graphs of order $2p^3$. J. Graph Theory 52 (2006), 341-352. | DOI | MR | JFM
[10] Feng, Y.-Q., Li, Y.-T.: One-regular graphs of square-free order of prime valency. Eur. J. Comb. 32 (2011), 265-275. | DOI | MR | JFM
[11] Gardiner, A., Praeger, C. E.: On 4-valent symmetric graphs. Eur. J. Comb. 15 (1994), 375-381. | DOI | MR | JFM
[12] Gardiner, A., Praeger, C. E.: A characterization of certain families of 4-valent symmetric graphs. Eur. J. Comb. 15 (1994), 383-397. | DOI | MR | JFM
[13] Gorenstein, D.: Finite Simple Groups. An Introduction to Their Classification. The University Series in Mathematics, Plenum Press, New York (1982). | DOI | MR | JFM
[14] Guo, S.-T., Feng, Y.-Q.: A note on pentavalent $s$-transitive graphs. Discrete Math. 312 (2012), 2214-2216. | DOI | MR | JFM
[15] Guo, S., Li, Y., Hua, X.: $(G,s)$-transitive graphs of valency 7. Algebra Colloq. 23 (2016), 493-500. | DOI | MR | JFM
[16] Guo, S.-T., Shi, J., Zhang, Z.-J.: Heptavalent symmetric graphs of order $4p$. South Asian J. Math. 1 (2011), 131-136. | MR | JFM
[17] Hua, X.-H., Feng, Y.-Q., Lee, J.: Pentavalent symmetric graphs of order $2pq$. Discrete Math. 311 (2011), 2259-2267. | DOI | MR | JFM
[18] Li, Y., Feng, Y.-Q.: Pentavalent one-regular graphs of square-free order. Algebra Colloq. 17 (2010), 515-524. | DOI | MR | JFM
[19] Liebeck, M. W., Praeger, C. E., Saxl, J.: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra 111 (1987), 365-383. | DOI | MR | JFM
[20] Lorimer, P.: Vertex-transitive graphs: symmetric graphs of prime valency. J. Graph Theory 8 (1984), 55-68. | DOI | MR | JFM
[21] McKay, B. D.: Transitive graphs with fewer than twenty vertices. Math. Comput. 33 (1979), 1101-1121. | DOI | MR | JFM
[22] Miller, R. C.: The trivalent symmetric graphs of girth at most six. J. Comb. Theory, Ser. B 10 (1971), 163-182. | DOI | MR | JFM
[23] Oh, J.-M.: A classification of cubic $s$-regular graphs of order $14p$. Discrete Math. 309 (2009), 2721-2726. | DOI | MR | JFM
[24] Oh, J.-M.: A classification of cubic $s$-regular graphs of order $16p$. Discrete Math. 309 (2009), 3150-3155. | DOI | MR | JFM
[25] Pan, J., Ling, B., Ding, S.: One prime-valent symmetric graphs of square-free order. Ars Math. Contemp. 15 (2018), 53-65. | DOI | MR
[26] Pan, J., Lou, B., Liu, C.: Arc-transitive pentavalent graphs of order $4pq$. Electron. J. Comb. 20 (2013), Researh Paper P36, 9 pages. | MR | JFM
[27] Potočnik, P.: A list of 4-valent 2-arc-transitive graphs and finite faithful amalgams of index $(4,2)$. Eur. J. Comb. 30 (2009), 1323-1336. | DOI | MR | JFM
[28] Sabidussi, G.: Vertex-transitive graphs. Monatsh. Math. 68 (1964), 426-438. | DOI | MR | JFM
[29] Sims, C. C.: Graphs and finite permutation groups. Math. Z. 95 (1967), 76-86. | DOI | MR | JFM
[30] Suzuki, M.: Group Theory I. Grundlehren der Mathematischen Wissenschaften 247, Springer, Berlin (1982). | DOI | MR | JFM
[31] Wilson, R. A.: The Finite Simple Groups. Graduate Texts in Mathematics 251, Springer, London (2009). | DOI | MR | JFM
[32] Xu, J., Xu, M.: Arc-transitive Cayley graphs of valency at most four on abelian groups. Southeast Asian Bull. Math. 25 (2001), 355-363. | DOI | MR | JFM
[33] Xu, M.-Y.: Automorphism groups and isomorphisms of Cayley digraphs. Discrete Math. 182 (1998), 309-319. | DOI | MR | JFM
[34] Zhou, J.-X., Feng, Y.-Q.: Tetravalent $s$-transitive graphs of order twice a prime power. J. Aust. Math. Soc. 88 (2010), 277-288. | DOI | MR | JFM
Cité par Sources :