Valency seven symmetric graphs of order $2pq$
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 581-599
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A graph is said to be symmetric if its automorphism group acts transitively on its arcs. In this paper, all connected valency seven symmetric graphs of order $2pq$ are classified, where $p$, $q$ are distinct primes. It follows from the classification that there is a unique connected valency seven symmetric graph of order $4p$, and that for odd primes $p$ and $q$, there is an infinite family of connected valency seven one-regular graphs of order $2pq$ with solvable automorphism groups, and there are four sporadic ones with nonsolvable automorphism groups, which is $1,2,3$-arc transitive, respectively. In particular, one of the four sporadic ones is primitive, and the other two of the four sporadic ones are bi-primitive.
A graph is said to be symmetric if its automorphism group acts transitively on its arcs. In this paper, all connected valency seven symmetric graphs of order $2pq$ are classified, where $p$, $q$ are distinct primes. It follows from the classification that there is a unique connected valency seven symmetric graph of order $4p$, and that for odd primes $p$ and $q$, there is an infinite family of connected valency seven one-regular graphs of order $2pq$ with solvable automorphism groups, and there are four sporadic ones with nonsolvable automorphism groups, which is $1,2,3$-arc transitive, respectively. In particular, one of the four sporadic ones is primitive, and the other two of the four sporadic ones are bi-primitive.
DOI : 10.21136/CMJ.2018.0530-15
Classification : 05C25, 20B25
Keywords: arc-transitive graph; symmetric graph; $s$-regular graph
@article{10_21136_CMJ_2018_0530_15,
     author = {Hua, Xiao-Hui and Chen, Li},
     title = {Valency seven symmetric graphs of order $2pq$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {581--599},
     year = {2018},
     volume = {68},
     number = {3},
     doi = {10.21136/CMJ.2018.0530-15},
     mrnumber = {3851877},
     zbl = {06986958},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0530-15/}
}
TY  - JOUR
AU  - Hua, Xiao-Hui
AU  - Chen, Li
TI  - Valency seven symmetric graphs of order $2pq$
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 581
EP  - 599
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0530-15/
DO  - 10.21136/CMJ.2018.0530-15
LA  - en
ID  - 10_21136_CMJ_2018_0530_15
ER  - 
%0 Journal Article
%A Hua, Xiao-Hui
%A Chen, Li
%T Valency seven symmetric graphs of order $2pq$
%J Czechoslovak Mathematical Journal
%D 2018
%P 581-599
%V 68
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0530-15/
%R 10.21136/CMJ.2018.0530-15
%G en
%F 10_21136_CMJ_2018_0530_15
Hua, Xiao-Hui; Chen, Li. Valency seven symmetric graphs of order $2pq$. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 581-599. doi: 10.21136/CMJ.2018.0530-15

[1] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24 (1997), 235-265. | DOI | MR | JFM

[2] Cheng, Y., Oxley, J.: On weakly symmetric graphs of order twice a prime. J. Comb. Theory, Ser. B 42 (1987), 196-211. | DOI | MR | JFM

[3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford University Press, Eynsham (1985). | MR | JFM

[4] Djoković, D. Ž., Miller, G. L.: Regular groups of automorphisms of cubic graphs. J. Comb. Theory, Ser. B 29 (1980), 195-230. | DOI | MR | JFM

[5] Fang, X. G., Praeger, C. E.: Finite two-arc transitive graphs admitting a Suzuki simple group. Commun. Algebra 27 (1999), 3727-3754. | DOI | MR | JFM

[6] Fang, X., Wang, J., Xu, M. Y.: On 1-arc-regular graphs. Eur. J. Comb. 23 (2002), 785-791. | DOI | MR | JFM

[7] Feng, Y.-Q., Ghasemi, M., Yang, D.-W.: Cubic symmetric graphs of order $8p^3$. Discrete Math. 318 (2014), 62-70. | DOI | MR | JFM

[8] Feng, Y.-Q., Kwak, J. H.: Cubic symmetric graphs of order a small number times a prime or a prime square. J. Comb. Theory, Ser. B 97 (2007), 627-646. | DOI | MR | JFM

[9] Feng, Y.-Q., Kwak, J. H., Xu, M.-Y.: Cubic $s$-regular graphs of order $2p^3$. J. Graph Theory 52 (2006), 341-352. | DOI | MR | JFM

[10] Feng, Y.-Q., Li, Y.-T.: One-regular graphs of square-free order of prime valency. Eur. J. Comb. 32 (2011), 265-275. | DOI | MR | JFM

[11] Gardiner, A., Praeger, C. E.: On 4-valent symmetric graphs. Eur. J. Comb. 15 (1994), 375-381. | DOI | MR | JFM

[12] Gardiner, A., Praeger, C. E.: A characterization of certain families of 4-valent symmetric graphs. Eur. J. Comb. 15 (1994), 383-397. | DOI | MR | JFM

[13] Gorenstein, D.: Finite Simple Groups. An Introduction to Their Classification. The University Series in Mathematics, Plenum Press, New York (1982). | DOI | MR | JFM

[14] Guo, S.-T., Feng, Y.-Q.: A note on pentavalent $s$-transitive graphs. Discrete Math. 312 (2012), 2214-2216. | DOI | MR | JFM

[15] Guo, S., Li, Y., Hua, X.: $(G,s)$-transitive graphs of valency 7. Algebra Colloq. 23 (2016), 493-500. | DOI | MR | JFM

[16] Guo, S.-T., Shi, J., Zhang, Z.-J.: Heptavalent symmetric graphs of order $4p$. South Asian J. Math. 1 (2011), 131-136. | MR | JFM

[17] Hua, X.-H., Feng, Y.-Q., Lee, J.: Pentavalent symmetric graphs of order $2pq$. Discrete Math. 311 (2011), 2259-2267. | DOI | MR | JFM

[18] Li, Y., Feng, Y.-Q.: Pentavalent one-regular graphs of square-free order. Algebra Colloq. 17 (2010), 515-524. | DOI | MR | JFM

[19] Liebeck, M. W., Praeger, C. E., Saxl, J.: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra 111 (1987), 365-383. | DOI | MR | JFM

[20] Lorimer, P.: Vertex-transitive graphs: symmetric graphs of prime valency. J. Graph Theory 8 (1984), 55-68. | DOI | MR | JFM

[21] McKay, B. D.: Transitive graphs with fewer than twenty vertices. Math. Comput. 33 (1979), 1101-1121. | DOI | MR | JFM

[22] Miller, R. C.: The trivalent symmetric graphs of girth at most six. J. Comb. Theory, Ser. B 10 (1971), 163-182. | DOI | MR | JFM

[23] Oh, J.-M.: A classification of cubic $s$-regular graphs of order $14p$. Discrete Math. 309 (2009), 2721-2726. | DOI | MR | JFM

[24] Oh, J.-M.: A classification of cubic $s$-regular graphs of order $16p$. Discrete Math. 309 (2009), 3150-3155. | DOI | MR | JFM

[25] Pan, J., Ling, B., Ding, S.: One prime-valent symmetric graphs of square-free order. Ars Math. Contemp. 15 (2018), 53-65. | DOI | MR

[26] Pan, J., Lou, B., Liu, C.: Arc-transitive pentavalent graphs of order $4pq$. Electron. J. Comb. 20 (2013), Researh Paper P36, 9 pages. | MR | JFM

[27] Potočnik, P.: A list of 4-valent 2-arc-transitive graphs and finite faithful amalgams of index $(4,2)$. Eur. J. Comb. 30 (2009), 1323-1336. | DOI | MR | JFM

[28] Sabidussi, G.: Vertex-transitive graphs. Monatsh. Math. 68 (1964), 426-438. | DOI | MR | JFM

[29] Sims, C. C.: Graphs and finite permutation groups. Math. Z. 95 (1967), 76-86. | DOI | MR | JFM

[30] Suzuki, M.: Group Theory I. Grundlehren der Mathematischen Wissenschaften 247, Springer, Berlin (1982). | DOI | MR | JFM

[31] Wilson, R. A.: The Finite Simple Groups. Graduate Texts in Mathematics 251, Springer, London (2009). | DOI | MR | JFM

[32] Xu, J., Xu, M.: Arc-transitive Cayley graphs of valency at most four on abelian groups. Southeast Asian Bull. Math. 25 (2001), 355-363. | DOI | MR | JFM

[33] Xu, M.-Y.: Automorphism groups and isomorphisms of Cayley digraphs. Discrete Math. 182 (1998), 309-319. | DOI | MR | JFM

[34] Zhou, J.-X., Feng, Y.-Q.: Tetravalent $s$-transitive graphs of order twice a prime power. J. Aust. Math. Soc. 88 (2010), 277-288. | DOI | MR | JFM

Cité par Sources :