Keywords: $2$-group; locally finite group; normal-by-finite subgroup; core-finite group
@article{10_21136_CMJ_2018_0504_16,
author = {Jabara, Enrico},
title = {Every $2$-group with all subgroups normal-by-finite is locally finite},
journal = {Czechoslovak Mathematical Journal},
pages = {491--496},
year = {2018},
volume = {68},
number = {2},
doi = {10.21136/CMJ.2018.0504-16},
mrnumber = {3819186},
zbl = {06890385},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0504-16/}
}
TY - JOUR AU - Jabara, Enrico TI - Every $2$-group with all subgroups normal-by-finite is locally finite JO - Czechoslovak Mathematical Journal PY - 2018 SP - 491 EP - 496 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0504-16/ DO - 10.21136/CMJ.2018.0504-16 LA - en ID - 10_21136_CMJ_2018_0504_16 ER -
%0 Journal Article %A Jabara, Enrico %T Every $2$-group with all subgroups normal-by-finite is locally finite %J Czechoslovak Mathematical Journal %D 2018 %P 491-496 %V 68 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0504-16/ %R 10.21136/CMJ.2018.0504-16 %G en %F 10_21136_CMJ_2018_0504_16
Jabara, Enrico. Every $2$-group with all subgroups normal-by-finite is locally finite. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 491-496. doi: 10.21136/CMJ.2018.0504-16
[1] Buckley, J. T., Lennox, J. C., Neumann, B. H., Smith, H., Wiegold, J.: Groups with all subgroups normal-by-finite. J. Aust. Math. Soc., Ser. A 59 (1995), 384-398. | DOI | MR | JFM
[2] Cutolo, G., Khukhro, E. I., Lennox, J. C., Rinauro, S., Smith, H., Wiegold, J.: Locally finite groups all of whose subgroups are boundedly finite over their cores. Bull. Lond. Math. Soc. 29 (1997), 563-570. | DOI | MR | JFM
[3] Kegel, O. H., Wehrfritz, B. A. F.: Locally Finite Groups. North-Holland Mathematical Library 3, North-Holland Publishing, Amsterdam (1973). | MR | JFM
[4] Lennox, J. C., Hassanabadi, A. Mohammadi, Stewart, A. G. R., Wiegold, J.: Nilpotent extensibility and centralizers in infinite 2-groups. Proceedings of the Second International Group Theory Conference (Bressanone, 1989) Rend. Circ. Mat. Palermo (2) Suppl. No. 23 (1990), 209-219. | MR | JFM
[5] Ol'shanskiĭ, A. Yu.: Geometry of Defining Relations in Groups. Mathematics and Its Applications. Soviet Series 70, Kluwer Academic Publishers, Dordrecht (1991). | DOI | MR | JFM
[6] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80, Springer, New York (1996). | DOI | MR | JFM
[7] Wilkens, B.: More on core-2 2-groups. J. Group Theory 20 (2017), 193-225. | DOI | MR | JFM
Cité par Sources :