Harmonic metrics on four dimensional non-reductive homogeneous manifolds
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 475-490 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study harmonic metrics with respect to the class of invariant metrics on non-reductive homogeneous four dimensional manifolds. In particular, we consider harmonic lifted metrics with respect to the Sasaki lifts, horizontal lifts and complete lifts of the metrics under study.
We study harmonic metrics with respect to the class of invariant metrics on non-reductive homogeneous four dimensional manifolds. In particular, we consider harmonic lifted metrics with respect to the Sasaki lifts, horizontal lifts and complete lifts of the metrics under study.
DOI : 10.21136/CMJ.2018.0502-16
Classification : 53C43, 53C55
Keywords: harmonic metric; non-reductive homogeneous space; pseudo-Riemannian geometry
@article{10_21136_CMJ_2018_0502_16,
     author = {Zaeim, Amirhesam and Atashpeykar, Parvane},
     title = {Harmonic metrics on four dimensional non-reductive homogeneous manifolds},
     journal = {Czechoslovak Mathematical Journal},
     pages = {475--490},
     year = {2018},
     volume = {68},
     number = {2},
     doi = {10.21136/CMJ.2018.0502-16},
     mrnumber = {3819185},
     zbl = {06890384},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0502-16/}
}
TY  - JOUR
AU  - Zaeim, Amirhesam
AU  - Atashpeykar, Parvane
TI  - Harmonic metrics on four dimensional non-reductive homogeneous manifolds
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 475
EP  - 490
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0502-16/
DO  - 10.21136/CMJ.2018.0502-16
LA  - en
ID  - 10_21136_CMJ_2018_0502_16
ER  - 
%0 Journal Article
%A Zaeim, Amirhesam
%A Atashpeykar, Parvane
%T Harmonic metrics on four dimensional non-reductive homogeneous manifolds
%J Czechoslovak Mathematical Journal
%D 2018
%P 475-490
%V 68
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0502-16/
%R 10.21136/CMJ.2018.0502-16
%G en
%F 10_21136_CMJ_2018_0502_16
Zaeim, Amirhesam; Atashpeykar, Parvane. Harmonic metrics on four dimensional non-reductive homogeneous manifolds. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 475-490. doi: 10.21136/CMJ.2018.0502-16

[1] Baird, P., Wood, J. C.: Harmonic Morphisms Between Riemannian Manifolds. London Mathematical Society Monographs New Series 29, Oxford University Press, Oxford (2003). | DOI | MR | JFM

[2] Bejan, C.-L., Druţă-Romaniuc, S.-L.: Connections which are harmonic with respect to general natural metrics. Differ. Geom. Appl. 30 (2012), 306-317. | DOI | MR | JFM

[3] Bejan, C.-L., Druţă-Romaniuc, S.-L.: Harmonic almost complex structures with respect to general natural metrics. Mediterr. J. Math. 11 (2014), 123-136. | DOI | MR | JFM

[4] Bejan, C.-L., Druţă-Romaniuc, S.-L.: Structures which are harmonic with respect to Walker metrics. Mediterr. J. Math. 12 (2015), 481-496. | DOI | MR | JFM

[5] Benyounes, M., Loubeau, E., Wood, C. M.: Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type. Differ. Geom. Appl. 25 (2007), 322-334. | DOI | MR | JFM

[6] Brozos-Vázquez, M., García-Río, E., Gilkey, P., Nikčević, S., Vázquez-Lorenzo, R.: The Geometry of Walker Manifolds. Synthesis Lectures on Mathematics and Statistics 5, Morgan & Claypool Publishers, San Rafael (2009). | DOI | MR | JFM

[7] Calvaruso, G., Fino, A.: Ricci solitons and geometry of four-dimensional non-reductive homogeneous spaces. Can. J. Math. 64 (2012), 778-804. | DOI | MR | JFM

[8] Calvaruso, G., Fino, A., Zaeim, A.: Homogeneous geodesics of non-reductive homogeneous pseudo-Riemannian 4-manifolds. Bull. Braz. Math. Soc. (N.S.) 46 (2015), 23-64. | DOI | MR | JFM

[9] Calvaruso, G., Zaeim, A.: A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces. J. Geom. Phys. 80 (2014), 15-25. | DOI | MR | JFM

[10] Calvaruso, G., Zaeim, A.: Geometric structures over non-reductive homogeneous 4-spaces. Adv. Geom. 14 (2014), 191-214. | DOI | MR | JFM

[11] Chen, B.-Y., Nagano, T.: Harmonic metrics, harmonic tensors, and Gauss maps. J. Math. Soc. Japan 36 (1984), 295-313. | DOI | MR | JFM

[12] Dodson, C. T. J., Pérez, M. Trinidad, Vázquez-Abal, M. E.: Harmonic-Killing vector fields. Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 481-490. | DOI | MR | JFM

[13] J. Eells, Jr., J. H. Sampson: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86 (1964), 109-160. | DOI | MR | JFM

[14] Falcitelli, M., Pastore, A. M.: On the tangent bundle and on the bundle of the linear frames over an affinely connected manifold. Math. Balk., New Ser. 2 (1988), 336-356. | MR | JFM

[15] Fels, M. E., Renner, A. G.: Non-reductive homogeneous pseudo-Riemannian manifolds of dimension four. Can. J. Math. 58 (2006), 282-311. | DOI | MR | JFM

[16] Kowalski, O., Sekizawa, M.: Almost Osserman structures on natural Riemann extensions. Differ. Geom. Appl. 31 (2013), 140-149. | DOI | MR | JFM

[17] O'Neill, B.: Semi-Riemannian Geometry. With Applications to Relativity. Pure and Applied Mathematics 103, Academic Press, New York (1983). | MR | JFM

[18] Patera, J., Sharp, R. T., Winternitz, P., Zassenhaus, H.: Invariants of real low dimension Lie algebras. J. Math. Phys. 17 (1976), 986-994. | DOI | MR | JFM

[19] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. Differential Geometry. Pure and Applied Mathematics 16, Marcel Dekker, New York (1973). | MR | JFM

Cité par Sources :