Keywords: harmonic metric; non-reductive homogeneous space; pseudo-Riemannian geometry
@article{10_21136_CMJ_2018_0502_16,
author = {Zaeim, Amirhesam and Atashpeykar, Parvane},
title = {Harmonic metrics on four dimensional non-reductive homogeneous manifolds},
journal = {Czechoslovak Mathematical Journal},
pages = {475--490},
year = {2018},
volume = {68},
number = {2},
doi = {10.21136/CMJ.2018.0502-16},
mrnumber = {3819185},
zbl = {06890384},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0502-16/}
}
TY - JOUR AU - Zaeim, Amirhesam AU - Atashpeykar, Parvane TI - Harmonic metrics on four dimensional non-reductive homogeneous manifolds JO - Czechoslovak Mathematical Journal PY - 2018 SP - 475 EP - 490 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0502-16/ DO - 10.21136/CMJ.2018.0502-16 LA - en ID - 10_21136_CMJ_2018_0502_16 ER -
%0 Journal Article %A Zaeim, Amirhesam %A Atashpeykar, Parvane %T Harmonic metrics on four dimensional non-reductive homogeneous manifolds %J Czechoslovak Mathematical Journal %D 2018 %P 475-490 %V 68 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0502-16/ %R 10.21136/CMJ.2018.0502-16 %G en %F 10_21136_CMJ_2018_0502_16
Zaeim, Amirhesam; Atashpeykar, Parvane. Harmonic metrics on four dimensional non-reductive homogeneous manifolds. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 475-490. doi: 10.21136/CMJ.2018.0502-16
[1] Baird, P., Wood, J. C.: Harmonic Morphisms Between Riemannian Manifolds. London Mathematical Society Monographs New Series 29, Oxford University Press, Oxford (2003). | DOI | MR | JFM
[2] Bejan, C.-L., Druţă-Romaniuc, S.-L.: Connections which are harmonic with respect to general natural metrics. Differ. Geom. Appl. 30 (2012), 306-317. | DOI | MR | JFM
[3] Bejan, C.-L., Druţă-Romaniuc, S.-L.: Harmonic almost complex structures with respect to general natural metrics. Mediterr. J. Math. 11 (2014), 123-136. | DOI | MR | JFM
[4] Bejan, C.-L., Druţă-Romaniuc, S.-L.: Structures which are harmonic with respect to Walker metrics. Mediterr. J. Math. 12 (2015), 481-496. | DOI | MR | JFM
[5] Benyounes, M., Loubeau, E., Wood, C. M.: Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type. Differ. Geom. Appl. 25 (2007), 322-334. | DOI | MR | JFM
[6] Brozos-Vázquez, M., García-Río, E., Gilkey, P., Nikčević, S., Vázquez-Lorenzo, R.: The Geometry of Walker Manifolds. Synthesis Lectures on Mathematics and Statistics 5, Morgan & Claypool Publishers, San Rafael (2009). | DOI | MR | JFM
[7] Calvaruso, G., Fino, A.: Ricci solitons and geometry of four-dimensional non-reductive homogeneous spaces. Can. J. Math. 64 (2012), 778-804. | DOI | MR | JFM
[8] Calvaruso, G., Fino, A., Zaeim, A.: Homogeneous geodesics of non-reductive homogeneous pseudo-Riemannian 4-manifolds. Bull. Braz. Math. Soc. (N.S.) 46 (2015), 23-64. | DOI | MR | JFM
[9] Calvaruso, G., Zaeim, A.: A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces. J. Geom. Phys. 80 (2014), 15-25. | DOI | MR | JFM
[10] Calvaruso, G., Zaeim, A.: Geometric structures over non-reductive homogeneous 4-spaces. Adv. Geom. 14 (2014), 191-214. | DOI | MR | JFM
[11] Chen, B.-Y., Nagano, T.: Harmonic metrics, harmonic tensors, and Gauss maps. J. Math. Soc. Japan 36 (1984), 295-313. | DOI | MR | JFM
[12] Dodson, C. T. J., Pérez, M. Trinidad, Vázquez-Abal, M. E.: Harmonic-Killing vector fields. Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 481-490. | DOI | MR | JFM
[13] J. Eells, Jr., J. H. Sampson: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86 (1964), 109-160. | DOI | MR | JFM
[14] Falcitelli, M., Pastore, A. M.: On the tangent bundle and on the bundle of the linear frames over an affinely connected manifold. Math. Balk., New Ser. 2 (1988), 336-356. | MR | JFM
[15] Fels, M. E., Renner, A. G.: Non-reductive homogeneous pseudo-Riemannian manifolds of dimension four. Can. J. Math. 58 (2006), 282-311. | DOI | MR | JFM
[16] Kowalski, O., Sekizawa, M.: Almost Osserman structures on natural Riemann extensions. Differ. Geom. Appl. 31 (2013), 140-149. | DOI | MR | JFM
[17] O'Neill, B.: Semi-Riemannian Geometry. With Applications to Relativity. Pure and Applied Mathematics 103, Academic Press, New York (1983). | MR | JFM
[18] Patera, J., Sharp, R. T., Winternitz, P., Zassenhaus, H.: Invariants of real low dimension Lie algebras. J. Math. Phys. 17 (1976), 986-994. | DOI | MR | JFM
[19] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. Differential Geometry. Pure and Applied Mathematics 16, Marcel Dekker, New York (1973). | MR | JFM
Cité par Sources :