Bloch type spaces on the unit ball of a Hilbert space
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 695-711
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We initiate the study of Bloch type spaces on the unit ball of a Hilbert space. As applications, the Hardy-Littlewood theorem in infinite-dimensional Hilbert spaces and characterizations of some holomorphic function spaces related to the Bloch type space are presented.
We initiate the study of Bloch type spaces on the unit ball of a Hilbert space. As applications, the Hardy-Littlewood theorem in infinite-dimensional Hilbert spaces and characterizations of some holomorphic function spaces related to the Bloch type space are presented.
DOI : 10.21136/CMJ.2018.0495-17
Classification : 32A18, 46E15
Keywords: Bloch type space; Lipschitz space; Hardy-Littlewood theorem; Hilbert space
@article{10_21136_CMJ_2018_0495_17,
     author = {Xu, Zhenghua},
     title = {Bloch type spaces on the unit ball of a {Hilbert} space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {695--711},
     year = {2019},
     volume = {69},
     number = {3},
     doi = {10.21136/CMJ.2018.0495-17},
     mrnumber = {3989275},
     zbl = {07088813},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0495-17/}
}
TY  - JOUR
AU  - Xu, Zhenghua
TI  - Bloch type spaces on the unit ball of a Hilbert space
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 695
EP  - 711
VL  - 69
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0495-17/
DO  - 10.21136/CMJ.2018.0495-17
LA  - en
ID  - 10_21136_CMJ_2018_0495_17
ER  - 
%0 Journal Article
%A Xu, Zhenghua
%T Bloch type spaces on the unit ball of a Hilbert space
%J Czechoslovak Mathematical Journal
%D 2019
%P 695-711
%V 69
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0495-17/
%R 10.21136/CMJ.2018.0495-17
%G en
%F 10_21136_CMJ_2018_0495_17
Xu, Zhenghua. Bloch type spaces on the unit ball of a Hilbert space. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 695-711. doi: 10.21136/CMJ.2018.0495-17

[1] Blasco, O., Galindo, P., Miralles, A.: Bloch functions on the unit ball of an infinite dimensional Hilbert space. J. Funct. Anal. 267 (2014), 1188-1204. | DOI | MR | JFM

[2] Chen, H.: Characterizations of $\alpha$-Bloch functions on the unit ball without use of derivative. Sci. China Ser. A 51 (2008), 1965-1981. | DOI | MR | JFM

[3] Chen, S., Ponnusamy, S., Rasila, A.: On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces. Math. Z. 279 (2015), 163-183. | DOI | MR | JFM

[4] Dai, J., Wang, B.: Characterizations of some function spaces associated with Bloch type spaces on the unit ball of $\mathbb{C}^{n}$. J. Inequal. Appl. 2015 (2015), 10 pages. | DOI | MR | JFM

[5] Deng, F., Ouyang, C.: Bloch spaces on bounded symmetric domains in complex Banach spaces. Sci. China Ser. A 49 (2006), 1625-1632. | DOI | MR | JFM

[6] Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions. Monographs and Textbooks in Pure and Applied Mathematics 255, Marcel Dekker, New York (2003). | DOI | MR | JFM

[7] Hahn, K. T.: Holomorphic mappings of the hyperbolic space into the complex Euclidean space and the Bloch theorem. Canad. J. Math 27 (1975), 446-458. | DOI | MR | JFM

[8] Hardy, G. H., Littlewood, J. E.: Some properties of fractional integrals II. Math. Z. 34 (1932), 403-439. | DOI | MR | JFM

[9] Holland, F., Walsh, D.: Criteria for membership of Bloch space and its subspace, BMOA. Math. Ann. 273 (1986), 317-335. | DOI | MR | JFM

[10] Krantz, S. G.: Lipschitz spaces, smoothness of functions, and approximation theory. Exposition. Math. 1 (1983), 193-260. | MR | JFM

[11] Krantz, S. G., Ma, D.: Bloch functions on strongly pseudoconvex domains. Indiana Univ. Math. J. 37 (1988), 145-163. | DOI | MR | JFM

[12] Lehto, O., Virtanen, K. I.: Boundary behaviour and normal meromorphic functions. Acta Math. 97 (1957), 47-65. | DOI | MR | JFM

[13] Li, S., Wulan, H.: Characterizations of $\alpha$-Bloch spaces on the unit ball. J. Math. Anal. Appl. 343 (2008), 58-63. | DOI | MR | JFM

[14] Nowak, M.: Bloch space and Möbius invariant Besov spaces on the unit ball of $\mathbb{C}^{n}$. Complex Variables, Theory Appl. 44 (2001), 1-12. | DOI | MR | JFM

[15] Pavlović, M.: On the Holland-Walsh characterization of Bloch functions. Proc. Edinb. Math. Soc., II. Ser. 51 (2008), 439-441. | DOI | MR | JFM

[16] Ren, G., Tu, C.: Bloch space in the unit ball of $\mathbb{C}^{n}$. Proc. Am. Math. Soc. 133 (2005), 719-726. | DOI | MR | JFM

[17] Ren, G., Xu, Z.: Slice Lebesgue measure of quaternions. Adv. Appl. Clifford Algebr. 26 (2016), 399-416. | DOI | MR | JFM

[18] Rudin, W.: Function Theory in the Unit Ball of $\mathbb{C}^{n}$. Classics in Mathematics, Springer, Berlin (2008). | DOI | MR | JFM

[19] Timoney, R. M.: Bloch functions in several complex variables I. Bull. Lond. Math. Soc. 12 (1980), 241-267. | DOI | MR | JFM

[20] Timoney, R. M.: Bloch functions in several complex variables II. J. Reine Angew. Math. 319 (1980), 1-22. | DOI | MR | JFM

[21] Yang, W., Ouyang, C.: Exact location of $\alpha$-Bloch spaces in $L^{p}_{a}$ and $H^{p}$ of a complex unit ball. Rocky Mountain J. Math. 30 (2000), 1151-1169. | DOI | MR | JFM

[22] Zhang, M., Chen, H.: Equivalent characterizations of $\alpha$-Bloch functions on the unit ball. Acta Math., Sin. Engl. Ser. 27 (2011), 2395-2408. | DOI | MR | JFM

[23] Zhao, R.: A characterization of Bloch-type spaces on the unit ball of $\mathbb{C}^{n}$. J. Math. Anal. Appl. 330 (2007), 291-297. | DOI | MR | JFM

[24] Zhu, K.: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 23 (1993), 1143-1177. | DOI | MR | JFM

[25] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226, Springer, New York (2005). | DOI | MR | JFM

Cité par Sources :