Keywords: Bloch type space; Lipschitz space; Hardy-Littlewood theorem; Hilbert space
@article{10_21136_CMJ_2018_0495_17,
author = {Xu, Zhenghua},
title = {Bloch type spaces on the unit ball of a {Hilbert} space},
journal = {Czechoslovak Mathematical Journal},
pages = {695--711},
year = {2019},
volume = {69},
number = {3},
doi = {10.21136/CMJ.2018.0495-17},
mrnumber = {3989275},
zbl = {07088813},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0495-17/}
}
TY - JOUR AU - Xu, Zhenghua TI - Bloch type spaces on the unit ball of a Hilbert space JO - Czechoslovak Mathematical Journal PY - 2019 SP - 695 EP - 711 VL - 69 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0495-17/ DO - 10.21136/CMJ.2018.0495-17 LA - en ID - 10_21136_CMJ_2018_0495_17 ER -
Xu, Zhenghua. Bloch type spaces on the unit ball of a Hilbert space. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 695-711. doi: 10.21136/CMJ.2018.0495-17
[1] Blasco, O., Galindo, P., Miralles, A.: Bloch functions on the unit ball of an infinite dimensional Hilbert space. J. Funct. Anal. 267 (2014), 1188-1204. | DOI | MR | JFM
[2] Chen, H.: Characterizations of $\alpha$-Bloch functions on the unit ball without use of derivative. Sci. China Ser. A 51 (2008), 1965-1981. | DOI | MR | JFM
[3] Chen, S., Ponnusamy, S., Rasila, A.: On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces. Math. Z. 279 (2015), 163-183. | DOI | MR | JFM
[4] Dai, J., Wang, B.: Characterizations of some function spaces associated with Bloch type spaces on the unit ball of $\mathbb{C}^{n}$. J. Inequal. Appl. 2015 (2015), 10 pages. | DOI | MR | JFM
[5] Deng, F., Ouyang, C.: Bloch spaces on bounded symmetric domains in complex Banach spaces. Sci. China Ser. A 49 (2006), 1625-1632. | DOI | MR | JFM
[6] Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions. Monographs and Textbooks in Pure and Applied Mathematics 255, Marcel Dekker, New York (2003). | DOI | MR | JFM
[7] Hahn, K. T.: Holomorphic mappings of the hyperbolic space into the complex Euclidean space and the Bloch theorem. Canad. J. Math 27 (1975), 446-458. | DOI | MR | JFM
[8] Hardy, G. H., Littlewood, J. E.: Some properties of fractional integrals II. Math. Z. 34 (1932), 403-439. | DOI | MR | JFM
[9] Holland, F., Walsh, D.: Criteria for membership of Bloch space and its subspace, BMOA. Math. Ann. 273 (1986), 317-335. | DOI | MR | JFM
[10] Krantz, S. G.: Lipschitz spaces, smoothness of functions, and approximation theory. Exposition. Math. 1 (1983), 193-260. | MR | JFM
[11] Krantz, S. G., Ma, D.: Bloch functions on strongly pseudoconvex domains. Indiana Univ. Math. J. 37 (1988), 145-163. | DOI | MR | JFM
[12] Lehto, O., Virtanen, K. I.: Boundary behaviour and normal meromorphic functions. Acta Math. 97 (1957), 47-65. | DOI | MR | JFM
[13] Li, S., Wulan, H.: Characterizations of $\alpha$-Bloch spaces on the unit ball. J. Math. Anal. Appl. 343 (2008), 58-63. | DOI | MR | JFM
[14] Nowak, M.: Bloch space and Möbius invariant Besov spaces on the unit ball of $\mathbb{C}^{n}$. Complex Variables, Theory Appl. 44 (2001), 1-12. | DOI | MR | JFM
[15] Pavlović, M.: On the Holland-Walsh characterization of Bloch functions. Proc. Edinb. Math. Soc., II. Ser. 51 (2008), 439-441. | DOI | MR | JFM
[16] Ren, G., Tu, C.: Bloch space in the unit ball of $\mathbb{C}^{n}$. Proc. Am. Math. Soc. 133 (2005), 719-726. | DOI | MR | JFM
[17] Ren, G., Xu, Z.: Slice Lebesgue measure of quaternions. Adv. Appl. Clifford Algebr. 26 (2016), 399-416. | DOI | MR | JFM
[18] Rudin, W.: Function Theory in the Unit Ball of $\mathbb{C}^{n}$. Classics in Mathematics, Springer, Berlin (2008). | DOI | MR | JFM
[19] Timoney, R. M.: Bloch functions in several complex variables I. Bull. Lond. Math. Soc. 12 (1980), 241-267. | DOI | MR | JFM
[20] Timoney, R. M.: Bloch functions in several complex variables II. J. Reine Angew. Math. 319 (1980), 1-22. | DOI | MR | JFM
[21] Yang, W., Ouyang, C.: Exact location of $\alpha$-Bloch spaces in $L^{p}_{a}$ and $H^{p}$ of a complex unit ball. Rocky Mountain J. Math. 30 (2000), 1151-1169. | DOI | MR | JFM
[22] Zhang, M., Chen, H.: Equivalent characterizations of $\alpha$-Bloch functions on the unit ball. Acta Math., Sin. Engl. Ser. 27 (2011), 2395-2408. | DOI | MR | JFM
[23] Zhao, R.: A characterization of Bloch-type spaces on the unit ball of $\mathbb{C}^{n}$. J. Math. Anal. Appl. 330 (2007), 291-297. | DOI | MR | JFM
[24] Zhu, K.: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 23 (1993), 1143-1177. | DOI | MR | JFM
[25] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226, Springer, New York (2005). | DOI | MR | JFM
Cité par Sources :