Coherence relative to a weak torsion class
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 455-474
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $R$ be a ring. A subclass $\mathcal {T}$ of left $R$-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. Then a left $R$-module $M$ is called $\mathcal {T}$-finitely generated if there exists a finitely generated submodule $N$ such that $M/N\in \mathcal {T}$; a left $R$-module $A$ is called $(\mathcal {T},n)$-presented if there exists an exact sequence of left $R$-modules $$ 0\longrightarrow K_{n-1}\longrightarrow F_{n-1}\longrightarrow \cdots \longrightarrow F_1\longrightarrow F_0\longrightarrow M\longrightarrow 0 $$ such that $F_0,\cdots ,F_{n-1}$ are finitely generated free and $K_{n-1}$ is $\mathcal {T}$-finitely generated; a left $R$-module $M$ is called $(\mathcal {T},n)$-injective, if ${\rm Ext}^n_R(A, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat, if ${\rm Tor}^R_n(M, A)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$. A ring $R$ is called $(\mathcal {T},n)$-coherent, if every $(\mathcal {T},n+1)$-presented module is $(n+1)$-presented. Some characterizations and properties of these modules and rings are given.
Let $R$ be a ring. A subclass $\mathcal {T}$ of left $R$-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. Then a left $R$-module $M$ is called $\mathcal {T}$-finitely generated if there exists a finitely generated submodule $N$ such that $M/N\in \mathcal {T}$; a left $R$-module $A$ is called $(\mathcal {T},n)$-presented if there exists an exact sequence of left $R$-modules $$ 0\longrightarrow K_{n-1}\longrightarrow F_{n-1}\longrightarrow \cdots \longrightarrow F_1\longrightarrow F_0\longrightarrow M\longrightarrow 0 $$ such that $F_0,\cdots ,F_{n-1}$ are finitely generated free and $K_{n-1}$ is $\mathcal {T}$-finitely generated; a left $R$-module $M$ is called $(\mathcal {T},n)$-injective, if ${\rm Ext}^n_R(A, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat, if ${\rm Tor}^R_n(M, A)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$. A ring $R$ is called $(\mathcal {T},n)$-coherent, if every $(\mathcal {T},n+1)$-presented module is $(n+1)$-presented. Some characterizations and properties of these modules and rings are given.
DOI :
10.21136/CMJ.2018.0494-16
Classification :
16D40, 16D50, 16P70
Keywords: $(\mathcal {T}, n)$-presented module; $(\mathcal {T}, n)$-injective module; $(\mathcal {T}, n)$-flat module; $(\mathcal {T}, n)$-coherent ring
Keywords: $(\mathcal {T}, n)$-presented module; $(\mathcal {T}, n)$-injective module; $(\mathcal {T}, n)$-flat module; $(\mathcal {T}, n)$-coherent ring
@article{10_21136_CMJ_2018_0494_16,
author = {Zhu, Zhanmin},
title = {Coherence relative to a weak torsion class},
journal = {Czechoslovak Mathematical Journal},
pages = {455--474},
year = {2018},
volume = {68},
number = {2},
doi = {10.21136/CMJ.2018.0494-16},
mrnumber = {3819184},
zbl = {06890383},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0494-16/}
}
TY - JOUR AU - Zhu, Zhanmin TI - Coherence relative to a weak torsion class JO - Czechoslovak Mathematical Journal PY - 2018 SP - 455 EP - 474 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0494-16/ DO - 10.21136/CMJ.2018.0494-16 LA - en ID - 10_21136_CMJ_2018_0494_16 ER -
Zhu, Zhanmin. Coherence relative to a weak torsion class. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 455-474. doi: 10.21136/CMJ.2018.0494-16
Cité par Sources :