Coherence relative to a weak torsion class
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 455-474.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a ring. A subclass $\mathcal {T}$ of left $R$-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. Then a left $R$-module $M$ is called $\mathcal {T}$-finitely generated if there exists a finitely generated submodule $N$ such that $M/N\in \mathcal {T}$; a left $R$-module $A$ is called $(\mathcal {T},n)$-presented if there exists an exact sequence of left $R$-modules $$ 0\longrightarrow K_{n-1}\longrightarrow F_{n-1}\longrightarrow \cdots \longrightarrow F_1\longrightarrow F_0\longrightarrow M\longrightarrow 0 $$ such that $F_0,\cdots ,F_{n-1}$ are finitely generated free and $K_{n-1}$ is $\mathcal {T}$-finitely generated; a left $R$-module $M$ is called $(\mathcal {T},n)$-injective, if ${\rm Ext}^n_R(A, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat, if ${\rm Tor}^R_n(M, A)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$. A ring $R$ is called $(\mathcal {T},n)$-coherent, if every $(\mathcal {T},n+1)$-presented module is $(n+1)$-presented. Some characterizations and properties of these modules and rings are given.
DOI : 10.21136/CMJ.2018.0494-16
Classification : 16D40, 16D50, 16P70
Keywords: $(\mathcal {T}, n)$-presented module; $(\mathcal {T}, n)$-injective module; $(\mathcal {T}, n)$-flat module; $(\mathcal {T}, n)$-coherent ring
@article{10_21136_CMJ_2018_0494_16,
     author = {Zhu, Zhanmin},
     title = {Coherence relative to a weak torsion class},
     journal = {Czechoslovak Mathematical Journal},
     pages = {455--474},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2018},
     doi = {10.21136/CMJ.2018.0494-16},
     mrnumber = {3819184},
     zbl = {06890383},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0494-16/}
}
TY  - JOUR
AU  - Zhu, Zhanmin
TI  - Coherence relative to a weak torsion class
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 455
EP  - 474
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0494-16/
DO  - 10.21136/CMJ.2018.0494-16
LA  - en
ID  - 10_21136_CMJ_2018_0494_16
ER  - 
%0 Journal Article
%A Zhu, Zhanmin
%T Coherence relative to a weak torsion class
%J Czechoslovak Mathematical Journal
%D 2018
%P 455-474
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0494-16/
%R 10.21136/CMJ.2018.0494-16
%G en
%F 10_21136_CMJ_2018_0494_16
Zhu, Zhanmin. Coherence relative to a weak torsion class. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 455-474. doi : 10.21136/CMJ.2018.0494-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0494-16/

Cité par Sources :