Coherence relative to a weak torsion class
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 455-474
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a ring. A subclass $\mathcal {T}$ of left $R$-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. Then a left $R$-module $M$ is called $\mathcal {T}$-finitely generated if there exists a finitely generated submodule $N$ such that $M/N\in \mathcal {T}$; a left $R$-module $A$ is called $(\mathcal {T},n)$-presented if there exists an exact sequence of left $R$-modules $$ 0\longrightarrow K_{n-1}\longrightarrow F_{n-1}\longrightarrow \cdots \longrightarrow F_1\longrightarrow F_0\longrightarrow M\longrightarrow 0 $$ such that $F_0,\cdots ,F_{n-1}$ are finitely generated free and $K_{n-1}$ is $\mathcal {T}$-finitely generated; a left $R$-module $M$ is called $(\mathcal {T},n)$-injective, if ${\rm Ext}^n_R(A, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat, if ${\rm Tor}^R_n(M, A)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$. A ring $R$ is called $(\mathcal {T},n)$-coherent, if every $(\mathcal {T},n+1)$-presented module is $(n+1)$-presented. Some characterizations and properties of these modules and rings are given.
Let $R$ be a ring. A subclass $\mathcal {T}$ of left $R$-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. Then a left $R$-module $M$ is called $\mathcal {T}$-finitely generated if there exists a finitely generated submodule $N$ such that $M/N\in \mathcal {T}$; a left $R$-module $A$ is called $(\mathcal {T},n)$-presented if there exists an exact sequence of left $R$-modules $$ 0\longrightarrow K_{n-1}\longrightarrow F_{n-1}\longrightarrow \cdots \longrightarrow F_1\longrightarrow F_0\longrightarrow M\longrightarrow 0 $$ such that $F_0,\cdots ,F_{n-1}$ are finitely generated free and $K_{n-1}$ is $\mathcal {T}$-finitely generated; a left $R$-module $M$ is called $(\mathcal {T},n)$-injective, if ${\rm Ext}^n_R(A, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat, if ${\rm Tor}^R_n(M, A)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$. A ring $R$ is called $(\mathcal {T},n)$-coherent, if every $(\mathcal {T},n+1)$-presented module is $(n+1)$-presented. Some characterizations and properties of these modules and rings are given.
DOI : 10.21136/CMJ.2018.0494-16
Classification : 16D40, 16D50, 16P70
Keywords: $(\mathcal {T}, n)$-presented module; $(\mathcal {T}, n)$-injective module; $(\mathcal {T}, n)$-flat module; $(\mathcal {T}, n)$-coherent ring
@article{10_21136_CMJ_2018_0494_16,
     author = {Zhu, Zhanmin},
     title = {Coherence relative to a weak torsion class},
     journal = {Czechoslovak Mathematical Journal},
     pages = {455--474},
     year = {2018},
     volume = {68},
     number = {2},
     doi = {10.21136/CMJ.2018.0494-16},
     mrnumber = {3819184},
     zbl = {06890383},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0494-16/}
}
TY  - JOUR
AU  - Zhu, Zhanmin
TI  - Coherence relative to a weak torsion class
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 455
EP  - 474
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0494-16/
DO  - 10.21136/CMJ.2018.0494-16
LA  - en
ID  - 10_21136_CMJ_2018_0494_16
ER  - 
%0 Journal Article
%A Zhu, Zhanmin
%T Coherence relative to a weak torsion class
%J Czechoslovak Mathematical Journal
%D 2018
%P 455-474
%V 68
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0494-16/
%R 10.21136/CMJ.2018.0494-16
%G en
%F 10_21136_CMJ_2018_0494_16
Zhu, Zhanmin. Coherence relative to a weak torsion class. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 455-474. doi: 10.21136/CMJ.2018.0494-16

[1] Chase, S. U.: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457-473. | DOI | MR | JFM

[2] Cheatham, T. J., Stone, D. R.: Flat and projective character modules. Proc. Am. Math. Soc. 81 (1981), 175-177. | DOI | MR | JFM

[3] Chen, J., Ding, N.: On $n$-coherent rings. Commun. Algebra 24 (1996), 3211-3216. | DOI | MR | JFM

[4] Costa, D. L.: Parameterizing families of non-Noetherian rings. Commun. Algebra 22 (1994), 3997-4011. | DOI | MR | JFM

[5] Enochs, E.: A note on absolutely pure modules. Canad. Math. Bull. 19 (1976), 361-362. | DOI | MR | JFM

[6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). | DOI | MR | JFM

[7] Enochs, E. E., Jenda, O. M. G., Lopez-Ramos, J. A.: The existence of Gorenstein flat covers. Math. Scand. 94 (2004), 46-62. | DOI | MR | JFM

[8] Jones, M. Finkel: Coherence relative to an hereditary torsion theory. Commun. Algebra 10 (1982), 719-739. | DOI | MR | JFM

[9] Holm, H., Jørgensen, P.: Covers, precovers, and purity. Illinois J. Math. 52 (2008), 691-703. | MR | JFM

[10] Mao, L., Ding, N.: Relative coherence of rings. J. Algebra Appl. 11 (2012), 1250047, 16 pages. | DOI | MR | JFM

[11] Megibben, C.: Absolutely pure modules. Proc. Am. Math. Soc. 26 (1970), 561-566. | DOI | MR | JFM

[12] Rotman, J. J.: An Introduction to Homological Algebra. Pure and Applied Mathematics 85, Academic Press, Harcourt Brace Jovanovich Publishers, New York-London (1979). | MR | JFM

[13] Stenström, B.: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. | DOI | MR | JFM

[14] Stenström, B.: Rings of Quotients. An Introduction to Methods of Ring Theory. Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer, New York (1975). | DOI | MR | JFM

[15] Trlifaj, J.: Cover, Envelopes, and Cotorsion Theories. Lecture notes for the workshop. Homological Methods in Module Theory, Cortona (2000).

[16] Wisbauer, R.: Foundations of Module and Ring Theory. A Handbook for Study and Research. Algebra, Logic and Applications 3, Gordon and Breach Science Publishers, Philadelphia (1991). | MR | JFM

[17] Yang, X., Liu, Z.: $n$-flat and $n$-FP-injective modules. Czech. Math. J. 61 (2011), 359-369. | DOI | MR | JFM

[18] Zhou, D.: On $n$-coherent rings and $(n,d)$-rings. Commun. Algebra 32 (2004), 2425-2441. | DOI | MR | JFM

Cité par Sources :