Keywords: $(\mathcal {T}, n)$-presented module; $(\mathcal {T}, n)$-injective module; $(\mathcal {T}, n)$-flat module; $(\mathcal {T}, n)$-coherent ring
@article{10_21136_CMJ_2018_0494_16,
author = {Zhu, Zhanmin},
title = {Coherence relative to a weak torsion class},
journal = {Czechoslovak Mathematical Journal},
pages = {455--474},
year = {2018},
volume = {68},
number = {2},
doi = {10.21136/CMJ.2018.0494-16},
mrnumber = {3819184},
zbl = {06890383},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0494-16/}
}
TY - JOUR AU - Zhu, Zhanmin TI - Coherence relative to a weak torsion class JO - Czechoslovak Mathematical Journal PY - 2018 SP - 455 EP - 474 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0494-16/ DO - 10.21136/CMJ.2018.0494-16 LA - en ID - 10_21136_CMJ_2018_0494_16 ER -
Zhu, Zhanmin. Coherence relative to a weak torsion class. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 455-474. doi: 10.21136/CMJ.2018.0494-16
[1] Chase, S. U.: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457-473. | DOI | MR | JFM
[2] Cheatham, T. J., Stone, D. R.: Flat and projective character modules. Proc. Am. Math. Soc. 81 (1981), 175-177. | DOI | MR | JFM
[3] Chen, J., Ding, N.: On $n$-coherent rings. Commun. Algebra 24 (1996), 3211-3216. | DOI | MR | JFM
[4] Costa, D. L.: Parameterizing families of non-Noetherian rings. Commun. Algebra 22 (1994), 3997-4011. | DOI | MR | JFM
[5] Enochs, E.: A note on absolutely pure modules. Canad. Math. Bull. 19 (1976), 361-362. | DOI | MR | JFM
[6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). | DOI | MR | JFM
[7] Enochs, E. E., Jenda, O. M. G., Lopez-Ramos, J. A.: The existence of Gorenstein flat covers. Math. Scand. 94 (2004), 46-62. | DOI | MR | JFM
[8] Jones, M. Finkel: Coherence relative to an hereditary torsion theory. Commun. Algebra 10 (1982), 719-739. | DOI | MR | JFM
[9] Holm, H., Jørgensen, P.: Covers, precovers, and purity. Illinois J. Math. 52 (2008), 691-703. | MR | JFM
[10] Mao, L., Ding, N.: Relative coherence of rings. J. Algebra Appl. 11 (2012), 1250047, 16 pages. | DOI | MR | JFM
[11] Megibben, C.: Absolutely pure modules. Proc. Am. Math. Soc. 26 (1970), 561-566. | DOI | MR | JFM
[12] Rotman, J. J.: An Introduction to Homological Algebra. Pure and Applied Mathematics 85, Academic Press, Harcourt Brace Jovanovich Publishers, New York-London (1979). | MR | JFM
[13] Stenström, B.: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. | DOI | MR | JFM
[14] Stenström, B.: Rings of Quotients. An Introduction to Methods of Ring Theory. Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer, New York (1975). | DOI | MR | JFM
[15] Trlifaj, J.: Cover, Envelopes, and Cotorsion Theories. Lecture notes for the workshop. Homological Methods in Module Theory, Cortona (2000).
[16] Wisbauer, R.: Foundations of Module and Ring Theory. A Handbook for Study and Research. Algebra, Logic and Applications 3, Gordon and Breach Science Publishers, Philadelphia (1991). | MR | JFM
[17] Yang, X., Liu, Z.: $n$-flat and $n$-FP-injective modules. Czech. Math. J. 61 (2011), 359-369. | DOI | MR | JFM
[18] Zhou, D.: On $n$-coherent rings and $(n,d)$-rings. Commun. Algebra 32 (2004), 2425-2441. | DOI | MR | JFM
Cité par Sources :