Non-Wieferich primes in number fields and $abc$-conjecture
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 445-453.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $K/\mathbb {Q}$ be an algebraic number field of class number one and let $\mathcal {O}_K$ be its ring of integers. We show that there are infinitely many non-Wieferich primes with respect to certain units in $\mathcal {O}_K$ under the assumption of the $abc$-conjecture for number fields.
DOI : 10.21136/CMJ.2018.0485-16
Classification : 11A41, 11R04
Keywords: Wieferich prime; non-Wieferich prime; number field; $abc$-conjecture
@article{10_21136_CMJ_2018_0485_16,
     author = {Kotyada, Srinivas and Muthukrishnan, Subramani},
     title = {Non-Wieferich primes in number fields and $abc$-conjecture},
     journal = {Czechoslovak Mathematical Journal},
     pages = {445--453},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2018},
     doi = {10.21136/CMJ.2018.0485-16},
     mrnumber = {3819183},
     zbl = {06890382},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0485-16/}
}
TY  - JOUR
AU  - Kotyada, Srinivas
AU  - Muthukrishnan, Subramani
TI  - Non-Wieferich primes in number fields and $abc$-conjecture
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 445
EP  - 453
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0485-16/
DO  - 10.21136/CMJ.2018.0485-16
LA  - en
ID  - 10_21136_CMJ_2018_0485_16
ER  - 
%0 Journal Article
%A Kotyada, Srinivas
%A Muthukrishnan, Subramani
%T Non-Wieferich primes in number fields and $abc$-conjecture
%J Czechoslovak Mathematical Journal
%D 2018
%P 445-453
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0485-16/
%R 10.21136/CMJ.2018.0485-16
%G en
%F 10_21136_CMJ_2018_0485_16
Kotyada, Srinivas; Muthukrishnan, Subramani. Non-Wieferich primes in number fields and $abc$-conjecture. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 445-453. doi : 10.21136/CMJ.2018.0485-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0485-16/

Cité par Sources :