Keywords: Lüroth expansion; run-length function; Hausdorff dimension
@article{10_21136_CMJ_2018_0474_16,
author = {Sun, Yu and Xu, Jian},
title = {On the maximal run-length function in the {L\"uroth} expansion},
journal = {Czechoslovak Mathematical Journal},
pages = {277--291},
year = {2018},
volume = {68},
number = {1},
doi = {10.21136/CMJ.2018.0474-16},
mrnumber = {3783599},
zbl = {06861581},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0474-16/}
}
TY - JOUR AU - Sun, Yu AU - Xu, Jian TI - On the maximal run-length function in the Lüroth expansion JO - Czechoslovak Mathematical Journal PY - 2018 SP - 277 EP - 291 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0474-16/ DO - 10.21136/CMJ.2018.0474-16 LA - en ID - 10_21136_CMJ_2018_0474_16 ER -
%0 Journal Article %A Sun, Yu %A Xu, Jian %T On the maximal run-length function in the Lüroth expansion %J Czechoslovak Mathematical Journal %D 2018 %P 277-291 %V 68 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0474-16/ %R 10.21136/CMJ.2018.0474-16 %G en %F 10_21136_CMJ_2018_0474_16
Sun, Yu; Xu, Jian. On the maximal run-length function in the Lüroth expansion. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 277-291. doi: 10.21136/CMJ.2018.0474-16
[1] Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers. Carus Mathematical Monographs 29, Mathematical Association of America, Washington (2002). | MR | JFM
[2] Erdős, P., Rényi, A.: On a new law of large numbers. J. Anal. Math. 23 (1970), 103-111. | DOI | MR | JFM
[3] Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley & Sons, Chichester (1990). | MR | JFM
[4] Galambos, J.: Representations of Real Numbers by Infinite Series. Lecture Notes in Mathematics 502, Springer, Berlin (1976). | DOI | MR | JFM
[5] Hutchinson, J. E.: Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), 713-747. | DOI | MR | JFM
[6] Kesseböhmer, M., Munday, S., Stratmann, B. O.: Infinite Ergodic Theory of Numbers. De Gruyter Graduate, De Gruyter, Berlin (2016). | DOI | MR | JFM
[7] Li, J., Wu, M.: On exceptional sets in Erdős-Rényi limit theorem. J. Math. Anal. Appl. 436 (2016), 355-365. | DOI | MR | JFM
[8] Li, J., Wu, M.: On exceptional sets in Erdős-Rényi limit theorem revisited. Monatsh. Math. 182 (2017), 865-875. | DOI | MR | JFM
[9] Lüroth, J.: Über eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe. Math. Ann. 21 (1883), 411-423 German \99999JFM99999 15.0187.01. | DOI | MR
[10] Ma, J.-H., Wen, S.-Y., Wen, Z.-Y.: Egoroff's theorem and maximal run length. Monatsh. Math. 151 (2007), 287-292. | DOI | MR | JFM
[11] Moran, P. A. P.: Additive functions of intervals and Hausdorff measure. Proc. Camb. Philos. Soc. 42 (1946), 15-23. | DOI | MR | JFM
[12] Révész, P.: Random Walk in Random and Non-random Environments. World Scientific, Hackensack (2005). | DOI | MR | JFM
[13] Sun, Y., Xu, J.: A remark on exceptional sets in Erdős-Rényi limit theorem. Monatsh. Math. 184 (2017), 291-296. | DOI | MR | JFM
[14] Wang, B. W., Wu, J.: On the maximal run-length function in continued fractions. Annales Univ. Sci. Budapest., Sect. Comp. 34 (2011), 247-268.
[15] Zou, R.: Hausdorff dimension of the maximal run-length in dyadic expansion. Czech. Math. J. 61 (2011), 881-888. | DOI | MR | JFM
Cité par Sources :