On the maximal run-length function in the Lüroth expansion
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 277-291 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We obtain a metrical property on the asymptotic behaviour of the maximal run-length function in the Lüroth expansion. We also determine the Hausdorff dimension of a class of exceptional sets of points whose maximal run-length function has sub-linear growth rate.
We obtain a metrical property on the asymptotic behaviour of the maximal run-length function in the Lüroth expansion. We also determine the Hausdorff dimension of a class of exceptional sets of points whose maximal run-length function has sub-linear growth rate.
DOI : 10.21136/CMJ.2018.0474-16
Classification : 11K55, 28A80
Keywords: Lüroth expansion; run-length function; Hausdorff dimension
@article{10_21136_CMJ_2018_0474_16,
     author = {Sun, Yu and Xu, Jian},
     title = {On the maximal run-length function in the {L\"uroth} expansion},
     journal = {Czechoslovak Mathematical Journal},
     pages = {277--291},
     year = {2018},
     volume = {68},
     number = {1},
     doi = {10.21136/CMJ.2018.0474-16},
     mrnumber = {3783599},
     zbl = {06861581},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0474-16/}
}
TY  - JOUR
AU  - Sun, Yu
AU  - Xu, Jian
TI  - On the maximal run-length function in the Lüroth expansion
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 277
EP  - 291
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0474-16/
DO  - 10.21136/CMJ.2018.0474-16
LA  - en
ID  - 10_21136_CMJ_2018_0474_16
ER  - 
%0 Journal Article
%A Sun, Yu
%A Xu, Jian
%T On the maximal run-length function in the Lüroth expansion
%J Czechoslovak Mathematical Journal
%D 2018
%P 277-291
%V 68
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0474-16/
%R 10.21136/CMJ.2018.0474-16
%G en
%F 10_21136_CMJ_2018_0474_16
Sun, Yu; Xu, Jian. On the maximal run-length function in the Lüroth expansion. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 277-291. doi: 10.21136/CMJ.2018.0474-16

[1] Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers. Carus Mathematical Monographs 29, Mathematical Association of America, Washington (2002). | MR | JFM

[2] Erdős, P., Rényi, A.: On a new law of large numbers. J. Anal. Math. 23 (1970), 103-111. | DOI | MR | JFM

[3] Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley & Sons, Chichester (1990). | MR | JFM

[4] Galambos, J.: Representations of Real Numbers by Infinite Series. Lecture Notes in Mathematics 502, Springer, Berlin (1976). | DOI | MR | JFM

[5] Hutchinson, J. E.: Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), 713-747. | DOI | MR | JFM

[6] Kesseböhmer, M., Munday, S., Stratmann, B. O.: Infinite Ergodic Theory of Numbers. De Gruyter Graduate, De Gruyter, Berlin (2016). | DOI | MR | JFM

[7] Li, J., Wu, M.: On exceptional sets in Erdős-Rényi limit theorem. J. Math. Anal. Appl. 436 (2016), 355-365. | DOI | MR | JFM

[8] Li, J., Wu, M.: On exceptional sets in Erdős-Rényi limit theorem revisited. Monatsh. Math. 182 (2017), 865-875. | DOI | MR | JFM

[9] Lüroth, J.: Über eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe. Math. Ann. 21 (1883), 411-423 German \99999JFM99999 15.0187.01. | DOI | MR

[10] Ma, J.-H., Wen, S.-Y., Wen, Z.-Y.: Egoroff's theorem and maximal run length. Monatsh. Math. 151 (2007), 287-292. | DOI | MR | JFM

[11] Moran, P. A. P.: Additive functions of intervals and Hausdorff measure. Proc. Camb. Philos. Soc. 42 (1946), 15-23. | DOI | MR | JFM

[12] Révész, P.: Random Walk in Random and Non-random Environments. World Scientific, Hackensack (2005). | DOI | MR | JFM

[13] Sun, Y., Xu, J.: A remark on exceptional sets in Erdős-Rényi limit theorem. Monatsh. Math. 184 (2017), 291-296. | DOI | MR | JFM

[14] Wang, B. W., Wu, J.: On the maximal run-length function in continued fractions. Annales Univ. Sci. Budapest., Sect. Comp. 34 (2011), 247-268.

[15] Zou, R.: Hausdorff dimension of the maximal run-length in dyadic expansion. Czech. Math. J. 61 (2011), 881-888. | DOI | MR | JFM

Cité par Sources :